APPENDIX G TERRAIN AND SOILS

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Attachment 9A TERRAIN AND SOILS ADDITIONAL DATA FOR ASSESSMENT 3B

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

9A.1 INTRODUCTION

This attachment includes information on soils that supports the environmental assessment for the flood and post-flood phases of the Springbank Off-stream Reservoir Project (the Project). Specifically, this attachment identifies methods to assess potential:

- effects of the Project on rates of soil dewatering and presents the results of that analysis
- changes to wind erosion risk and the effectiveness of mitigation, and presents the results of that analysis

9A.2 SOILS DEWATERING

9A.2.1 Rationale

Flood events are expected to saturate the vadose zone and elevate the water table to the land surface in the reservoir. While reservoir drainage will remove water above the land surface in just a few days, the process of removing water from the soil will proceed more slowly. Two major processes will contribute to de-watering of soil profiles. The first is gravitational drainage and the second is evapotranspiration by the atmosphere (primarily through vegetation). Gravitational drainage will be limited by the very low saturated hydraulic conductivity of the clay textured, massive structured C horizons of the dominant fine textured soils. Gravitational drainage will result in soil moisture content near field capacity values if soil drainage is not prevented by persistently high water tables. Rates of soil gravitational drainage are thus linked to groundwater recession rates.

Evapotranspiration through vegetation or though the land surface will reduce soil moisture content below field capacity towards the range of pre-flood moisture content. Rates of soil moisture loss are controlled by the moisture deficit, the difference between precipitation and potential evapotranspiration. A water balance approach has been used to estimate the rate at which soils dewater to pre-flood water contents.

Rates of gravitational drainage are not quantified, but estimates are provided in order to assess rates of soil dewatering. Because of uncertainties with respect to evaporation, two methods of estimating evapotranspiration are used to bracket the range of outcomes.

9A.2.2 Mitigation

No mitigation measures are planned to accelerate the process of soil dewatering

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

9A.2.3 Procedure for Estimating Water Removal Rates from Soil

Estimating the time required to dewater soils (after initial drainage through subsurface drains) is based on a water balance approach. The time required will depend on the rate of withdrawal through evapotranspiration and the amount of water stored in the soil above the water table.

The annual average moisture deficit, determined as the balance of precipitation and evapotranspiration, sets the theoretical rate annual evapotranspiration (E). Two approaches have been used to estimate moisture deficit.

The first, more conservative lake evaporation (Alberta Government 2013) approach, compares annual precipitation (Environment Canada 2016) with lake evaporation to calculate a moisture deficit. Lake evapotranspiration is 541 mm/y, whereas precipitation is 470/y. The moisture deficit is, therefore, 71 mm/y.

A second, less-conservative, approach uses potential evapotranspiration instead of lake evaporation. For this approach, moisture deficit expected for the LAA is estimated from potential evapotranspiration normals predicted using data from the Calgary International Airport (Alberta Government 2013) and average annual precipitation for the Springbank Airport (Environment Canada 2016). Precipitation is 470 mm/y, while potential evapotranspiration is 966 mm/y. Annual moisture deficit calculated in this manner is 496 mm. This means that average net removal of soil water is 496 mm *per* year.

The amount of water in the soil (S) to the depth of the water table was determined for soil hydraulic properties. Moisture content at two points in time are required to calculate the amount of water that should be removed from the soil. Moisture content at time 1 (T1) was estimated from soil hydraulic properties documented in the Alberta Soil Layer File (Soil Landscapes of Canada Working Group, 2010); properties include water storage at saturation, field capacity and wilting point of all major soil horizons present in the LAA. Hydraulic properties allowed estimation of the amount of water stored in the soil, both at saturation (S1). The second moisture content concerns the amount of water typically present in the soil profile in the region (S2). This moisture content defines the lower limit of moisture content, or the pre-flood moisture content. The difference between initial water content (S1) and the final water content at the end of dewatering (S2) marks the amount of water to be removed (Δ S=S1-S2).

The time required to dewater soils to pre-flood moisture content is shown in equation 1.

Eq 1: (ΔS)/E

Because annual moisture deficits are expressed in units of years the resulting rate is years, with years understood to mean growing seasons. One year is equal to one growing season.

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

The typical soil water content in soils in the reservoir is estimated based on data from long term agro-climatic monitoring sites managed by the province. Data were obtained from a site at Lacombe, Alberta (Alberta Agriculture 2016). This site was chosen to represent typical soil moisture patterns for the Project site because of similar soil and climate conditions. The Lacombe site had an 8-year record of soil moisture (measured hourly, summarized by month). This dataset allowed an empirical approach to estimate the long-term variation in soil moisture content expected for the LAA. This estimated water content represents a pre-flood moisture content of moderately well and well drained Chernozems in the LAA and is the benchmark used for de-watering estimates.

Table 9A-1 shows estimates of S2 obtained from Lacombe. Values of S2 for the topsoil, subsoil, and lower subsoil are 0.76, 0.75 and 0.82 of field capacity water contents. In other words, while soil moisture content varies, soil moisture is typically 76, 75, and 82% of field capacity for these respective depths over an 8-year period of record.

Table 9A-1 Summary of Soil Moisture Statistics from Lacombe Climate Station

Parameter	Topsoil (20 cm depth) (% by volume)	Subsoil (50 cm depth) (% by volume)	Parent Material (100 cm depth) (% by volume)
Average April to September moisture content, period of record ¹	25	21	31
Field capacity for Local Soils ²	33	28	38
Ratio of average to field capacity ³	0.76	0.75	0.82

NOTES:

¹ eight-year period of record, moisture measured hourly and summarized by month, (Alberta Agriculture 2016).

² field capacity of Lone Pine Series (Walker 2006)

³ ratio represents long term average moisture variability for that depth increment as a percentage of field capacity

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

9A.2.4 Analytical Methods for Dewatering Estimates

A water balance approach has been used to estimate the time required to dewater flooded soils to a background threshold. The amount of water storage in soils in the LAA are estimated based on water holding properties of each constituent series and the depth to water table (Table 9A-2). Table 9A-2 shows calculations of how much water should be removed from the soil profile to reach background moisture content. The calculations show amounts by horizon (topsoil, subsoil, and parent material) to the estimated depth of the water table. Saturation water content is the quantity of water present when all soil pores are filled. Minimum air requirement is the water content when 10% of porosity is filled with air, and the other 90% of porosity remains filled with water. The largest soil pores are typically those that drain first and provide active aeration. Field capacity is the moisture content measured typically at 33 kilopascals of suction (Brady and Weil 2010), or in practical terms, the amount of water present about two days following a major rain event, assuming soils are well drained. The estimated average content water content based on data collected for an 8-year period in Black Chernozem soil profiles at Lacombe, Alberta. The effect of artificial drainage on soil is to reduce water content to field capacity in the horizons above the drain depth. When drains are not present, this water remains in the soil.

The time required to dewater soil to background is based on two estimates of evaporative demand. The more conservative approach uses the ratio of average annual moisture deficit based on lake evaporation (71mm) to the amount of water stored in the soil (Table 9A-3). The less conservative approach uses the ratio of average annual moisture deficit based on potential evapotranspiration (496 mm) to the amount of water stored in the soil (Table 9A-4). Both approaches are reasonable for determining the number of years required to dewater the soil profile to the pre-flood moisture content.

		An	Amount of Soil Water to Remove (mm) ^{1,3,4,5}			
Soil Units	Increment	Saturation to Minimum Air Requirement ⁶	Minimum Air Requirement to Field Capacity ⁷	Field Capacity to Background	Total (mm)	
DVG1	Topsoil	14	31	22	67	
	Subsoil	11	13	21	45	
	Parent Material ²	91	55	137	282	
Total					394	

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

		Ar	nount of Soil Water	to Remove (mm) ^{1,3}	s,4,5
Soil Units	Increment	Saturation to Minimum Air Requirement ⁶	Minimum Air Requirement to Field Capacity ⁷	Field Capacity to Background	Total (mm)
DVFS1 and FSH1	Topsoil	17	33	29	78
	Subsoil	10	0	24	28
	Parent Material ²	76	0	132	161
Total					267
DVFS2 and FSH2	Topsoil	17	33	29	78
	Subsoil	10	0	24	28
	Parent Material ²	64	0	110	135
Total					241
POT1	Topsoil	16	31	27	75
	Subsoil	10	0	26	25
	Parent Material ²	25	4	41	70
Total					170
POT2	Topsoil	16	31	27	75
	Subsoil	10	0	26	25
	Parent Material ²	38	6	61	105
Total					205
POT6	Topsoil	16	31	27	75
	Subsoil	10	0	26	25
	Parent Material ²	51	8	81	140
Total					240

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

		An	nount of Soil Water	to Remove (mm) ^{1,3,}	4,5
Soil Units	Increment	Saturation to Minimum Air Requirement ⁶	Minimum Air Requirement to Field Capacity ⁷	Field Capacity to Background	Total (mm)
POT7	Topsoil	17	8	35	60
	Subsoil	6	0	15	15
	Parent Material ²	24	35	32	91
Total					166
MSTB1	Topsoil	20	45	32	97
	Subsoil	3	0	7	9
	Parent Material ²	28	21	42	91
Total					197
SRC1	Topsoil	13	25	22	60
	Subsoil	5	9	9	24
	PM Drained	29	27	42	97
	Parent Material ²	22	20	32	73
Total					254
SRCgr	Topsoil	13	25	22	60
	Subsoil	3	6	6	15
	PM Drained	17	23	24	64
	Parent Material ²	13	17	18	48
Total					187
ZGC	Topsoil	19	0	47	39
	Subsoil	0	0	0	0
	PM Drained	29	115	26	170
	Parent Material ²	21	82	19	121
Total					330

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

		An	nount of Soil Water	to Remove (mm) ^{1,3}	,4,5
Soil Units	Increment	Saturation to Minimum Air Requirement ⁶	Minimum Air Requirement to Field Capacity ⁷	Field Capacity to Background	Total (mm)
SRC4	Topsoil	13	25	22	60
	Subsoil	5	9	9	22
	PM Drained	26	26	38	90
	Parent Material ²	20	20	29	68
Total					240
TBR1 and TBSR1 and TBR2	Topsoil	3	8	4	16
	Subsoil	1	2	1	4
	PM Drained	37	147	34	219
	Parent Material ²	21	82	19	121
Total					360
TBRgr	Topsoil	3	8	18	29
	Subsoil	1	2	1	3
	PM Drained	22	103	18	143
	Parent Material ²	12	57	10	79
Total					254
TBR4	Topsoil	3	8	7	18
	Subsoil	1	2	1	4
	PM Drained	34	138	31	203
	Parent Material ²	19	77	17	113
Total					338

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

		An	Amount of Soil Water to Remove (mm) ^{1,3,4,5}			
Soil Units	Increment	Saturation to Minimum Air Requirement ⁶	Minimum Air Requirement to Field Capacity ⁷	Field Capacity to Background	Total (mm)	
TBRgr1 and TBRgr2	Topsoil	3	8	18	29	
	Subsoil	1	2	1	3	
	PM Drained	22	103	18	143	
	Parent Material ²	12	57	10	79	
Total					254	

Table 9A-2 Quantity of Soil Water to Remove by Unit and Depth

NOTES:

¹ Areas and proportions will not sum exactly to totals because of rounding

² Lower depth of PM is set to the depth of the water table; capillary effects on moisture content ignored. Depth of water table based on field observations and professional judgment. Water table ranges from 0.5 m below surface for Gleysolic dominated units to more than 2 m in well drained Chernozem dominated units.

³ thickness of all topsoil and subsoil layers based on averages from field data

⁴ bulk density from Alberta Soil Layer file for respective Alberta soil series. Units Mg m⁻³ (mega grams per cubic meter)

- ⁵ volumetric water content at saturation estimated from bulk density and assumed particle density of 2.65
- ⁶ minimum required air filled porosity set at 10% of total porosity; this is the moisture content when 10% of porosity is air-filled, considered minimum that supports aerobic respiration processes in soils (Brady and Weil 2010)

⁷ field capacity water content from Soil Layer file for Alberta soils

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

9A.2.5 Time Requirements Assuming Lake Evaporation Rates Control Moisture Deficit

Using lake evaporation rates to estimate annual moisture deficit is the most conservative approach because these rates are much lower than potential evapotranspiration. Time estimates for soil dewatering are for two mitigation measures (Table 9A-3):

• The first set of estimates assumes that no artificial drainage is provided.

The unit of time is year, with a year understood to mean one growing season. There is no translation into units of months or weeks because moisture deficit is distributed unequally over and within the seasons.

Soil Units	Increment	Time to Minimum Air Requirement ^{1,2} (y)	Time to Background Soil Moisture Content ^{1,2} (y)
DVG1	Topsoil	0.2	0.9
	Subsoil	0.2	0.6
	Parent Material ²		4.0
Total (y)			5.5
DVFS1 and FSH1	Topsoil	0.2	1.1
	Subsoil	0.1	0.4
	Parent Material ²		2.3
Total (y)			3.8
DVFS2 and FSH2	Topsoil	0.2	1.1
	Subsoil	0.1	0.4
	Parent Material ²		1.9
Total (y)			3.4
POT1	Topsoil	0.2	1.1
	Subsoil	0.1	0.4
	Parent Material ²		1.0
Total (y)			2.5

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Soil Units	Increment	Time to Minimum Air Requirement ^{1,2} (y)	Time to Background Soil Moisture Content ^{1,2} (y)
POT2	Topsoil	0.2	1.1
	Subsoil	0.1	0.4
	Parent Material ²		1.5
Total (y)			3.0
POT6	Topsoil	0.2	1.1
	Subsoil	0.1	0.4
	Parent Material ²		2.0
Total (y)			3.5
POT7	Topsoil	0.2	0.9
	Subsoil	0.1	0.2
	Parent Material ²		1.3
Total (y)			2.4
MSTB1	Topsoil	0.3	1.4
	Subsoil	0.0	0.1
	Parent Material ²		1.3
Total (y)			2.8
SRC1	Topsoil	0.2	0.8
	Subsoil	0.1	0.3
	PM Drained ³	0.4	1.4
	Parent Material ²		1.0
Total (y)			3.5
SRCgr	Topsoil	0.2	0.8
	Subsoil	0.0	0.2
	PM Drained ³	0.2	0.9
	Parent Material ²		0.7
Total (y)			2.6

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Soil Units	Increment	Time to Minimum Air Requirement ^{1,2} (y)	Time to Background Soil Moisture Content ^{1,2} (y)
ZGC1	Topsoil	0.3	0.5
	Subsoil	0.0	0.0
	PM Drained ³	0.4	2.4
	Parent Material ²		1.7
Total (y)			4.6
SRC4	Topsoil	0.2	0.8
	Subsoil	0.1	0.3
	PM Drained ³	0.4	1.3
	Parent Material ²		1.0
Total (y)			3.4
TBR1 and TBSR1 and TBR2	Topsoil	0.0	0.2
	Subsoil	0.0	0.1
	PM Drained ³	0.5	3.1
	Parent Material ²		1.7
Total (y)			4.9
TBRgr1	Topsoil	0.0	0.4
	Subsoil	0.0	0.0
	PM Drained ³	0.3	2.0
	Parent Material ²		1.1
Total (y)			3.5
TBR4	Topsoil	0.0	0.3
	Subsoil	0.0	0.1
	PM Drained ³	0.5	2.9
	Parent Material ²		1.6
Total (y)			4.9

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Soil Units	Increment	Time to Minimum Air Requirement ^{1,2} (y)	Time to Background Soil Moisture Content ^{1,2} (y)
TBRgr1 and TBRgr2	Topsoil	0.0	0.4
	Subsoil	0.0	0.0
	PM Drained ³	0.3	2.0
	Parent Material ²		1.1
Total (y)			3.5
ZREC	Topsoil	0.2	0.8
	Subsoil	0.2	0.5
	Parent Material ²		1.9
Total (y)			3.2
ZREC2A	Topsoil	0.2	0.8
	Subsoil	0.2	0.5
	Parent Material ²		1.9
Total (y)			3.2
ZREC2B	Topsoil	0.2	0.8
	Subsoil	0.2	0.5
	Parent Material ²		0.9
Total (y)			2.2
ZREC2C	Topsoil	0.2	0.8
	Subsoil	0.2	0.5
	Parent Material ²		0.6
Total (y)			1.9
ZREC3A	Topsoil	0.2	0.8
	Subsoil	0.2	0.5
	Parent Material ²		5.5
Total (y)			6.8

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-3Time Requirements to Achieve Dewatering of Soil Assuming Lake
Evaporation Rates

Soil Units	Increment	Time to Minimum Air Requirement ^{1,2} (y)	Time to Background Soil Moisture Content ^{1,2} (y)
ZREC3B	Topsoil	0.2	0.8
	Subsoil	0.2	0.5
	Parent Material ²		2.7
Total (y)			4.0
ZREC3C	Topsoil	0.2	0.8
	Subsoil	0.2	0.5
	Parent Material ²		1.8
Total (y)			3.1

NOTES:

¹ a growing season is the equivalent of one year's evapotranspiration, assuming precipitation occurs at the long term average rate for this duration

² sites rely only on evapotranspiration to remove soil water

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

9A.2.6 Time Requirements Assuming Potential Evapotranspiration Rates Control Moisture Deficit

This set of estimates is based on the less conservative use of potential evapotranspiration to calculate annual moisture deficit. Several key assumptions underlie this approach that may not be fully met under the project conditions. Most important, vegetation health and vigor is assumed to not be effected by flooding, or at the least, vegetation quickly responds to reservoir drainage and uses water at the potential rate. the time required to restore soil moisture to background is much less with this approach than with the use of lake evaporation rates.

Soil Units	Increment	Time to minimum air requirement ^{1,2} (y)	Time to background soil moisture content ^{1,2} (y)
DVG1	Topsoil	0.03	0.13
	Subsoil	0.02	0.09
	Parent Material ²		0.57
Total (y)			0.79
DVFS1 and FSH1	Topsoil	0.03	0.16
	Subsoil	0.02	0.06
	Parent Material ²		0.33
Total (y)			0.54
DVFS2 and FSH2	Topsoil	0.03	0.16
	Subsoil	0.02	0.06
	Parent Material ²		0.27
Total (y)			0.48
POT1	Topsoil	0.03	0.15
	Subsoil	0.02	0.05
	Parent Material ²		0.14
Total (y)			0.34
POT2	Topsoil	0.03	0.15
	Subsoil	0.02	0.05
	Parent Material ²		0.21
Total (y)			0.41

Table 9A-4Time Requirements to Achieve Dewatering of Soil Assuming Potential
Evapotranspiration Rates

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-4	Time Requirements to Achieve Dewatering of Soil Assuming Potential
	Evapotranspiration Rates

Soil Units	Increment	Time to minimum air requirement ^{1,2} (y)	Time to background soil moisture content ^{1,2} (y)
POT6	Topsoil	0.03	0.15
	Subsoil	0.02	0.05
	Parent Material ²		0.28
Total (y)			0.49
POT7	Topsoil	0.03	0.12
	Subsoil	0.01	0.03
	Parent Material ²		0.18
Total (y)			0.34
MSTB1	Topsoil	0.04	0.20
	Subsoil	0.01	0.02
	Parent Material ²		0.18
Total (y)			0.40
SRC1	Topsoil	0.03	0.12
	Subsoil	0.01	0.05
	PM Drained ³	0.06	0.20
	Parent Material ²		0.15
Total (y)			0.51
SRCgr	Topsoil	0.03	0.12
	Subsoil	0.01	0.03
	PM Drained ³	0.03	0.13
	Parent Material ²		0.10
Total (y)			0.38
ZGC1	Topsoil	0.04	0.08
	Subsoil	0.00	0.00
	PM Drained ³	0.06	0.34
	Parent Material ²		0.24
Total (y)			0.67

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-4Time Requirements to Achieve Dewatering of Soil Assuming Potential
Evapotranspiration Rates

Soil Units	Increment	Time to minimum air requirement ^{1,2} (y)	Time to background soil moisture content ^{1,2} (y)
SRC4	Topsoil	0.03	0.12
	Subsoil	0.01	0.04
	PM Drained ³	0.05	0.18
	Parent Material ²		0.14
Total (y)			0.49
TBR1 and TBSR1 and TBR2	Topsoil	0.01	0.03
	Subsoil	0.00	0.01
	PM Drained ³	0.08	0.44
	Parent Material ²		0.24
Total (y)			0.73
TBRgr1	Topsoil	0.01	0.06
	Subsoil	0.00	0.01
	PM Drained ³	0.05	0.29
	Parent Material ²		0.16
Total (y)			0.51
TBR4	Topsoil	0.01	0.04
	Subsoil	0.00	0.01
	PM Drained ³	0.07	0.41
	Parent Material ²		0.23
Total (y)			0.68
TBRgr1 and TBRgr2	Topsoil	0.01	0.06
	Subsoil	0.00	0.01
	PM Drained ³	0.05	0.29
	Parent Material ²		0.16
Total (y)			0.51
ZREC	Topsoil	0.03	0.12
	Subsoil	0.02	0.07
	Parent Material2		0.27
Total (y)			0.45

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Soil Units	Increment	Time to minimum air requirement ^{1,2} (y)	Time to background soil moisture content ^{1,2} (y)
ZREC2A	Topsoil	0.03	0.12
	Subsoil	0.02	0.07
	Parent Material2		0.27
Total (y)			0.45
ZREC2B	Topsoil	0.03	0.12
	Subsoil	0.02	0.07
	Parent Material2		0.13
Total (y)			0.32
ZREC2C	Topsoil	0.03	0.12
	Subsoil	0.02	0.07
	Parent Material2		0.09
Total (y)			0.28
ZREC3A	Topsoil	0.03	0.12
	Subsoil	0.02	0.07
	Parent Material2		0.78
Total (y)			0.97
ZREC3B	Topsoil	0.03	0.12
	Subsoil	0.02	0.07
	Parent Material2		0.39
Total (y)			0.58
ZREC3C	Topsoil	0.03	0.12
	Subsoil	0.02	0.07
	Parent Material2		0.26
Total (y)			0.45

Table 9A-4Time Requirements to Achieve Dewatering of Soil Assuming Potential
Evapotranspiration Rates

NOTES:

¹ a growing season is the equivalent of one year's evapotranspiration, assuming average precipitation for this duration

² subsurface drainage relies on evapotranspiration to remove soil water; ³

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

9A.2.7 Conclusion

Assuming average seasonal precipitation, the better drained upland soils typically require approximately 2 to 6 years (lake evaporation model) and 0.5 to 1 year (Potential evapotranspiration) to reach pre-flood moisture content.

9A.3 WIND EROSION EFFECTS

Due to the addition of fresh coarse textured sediment to the reservoir during operations, there is a possibility of increased wind erosion risk. The potential for increased wind erosion risk exists when sediments deposited on the reservoir bottom during water impoundment are exposed to the atmosphere after the water is drained. The rate of drying for the sediments will be controlled by seasonality, climatic factors and the vegetation cover on the ground surface. Coarser textured sediments (sand size) are expected to be commonly encountered on the reservoir bottom because their settling times are rapid compared to silt and clay particles when suspended in solution (See Hydrology Section, 3B).

Mitigation will be used to reduce the risk of wind erosion of the newly added sediment and will need to be designed for winter months: wind erosion is a concern in winter months in this region (Larney et al. 1995).

One possible mitigation for wind erosion in the reservoir floodplain involves reestablishment of vegetation soon after reservoir dewatering. Revegetation success, however, is not assured, given initial high moisture contents and reduced energy inputs during autumn.

An alternative (it will protect soil from wind erosion over winter) is using a tackifier. Niveo-aeolian deposits (coarse soil deposited by wind during winter) are prevalent world-wide and thus provide evidence that winter soil wind erosion is common (McKenna and Nueman 1993).

It is proposed that a sprayable erosion control product be applied to the reservoir floodplain to reduce soil erodibility due to wind if vegetative controls are not effective. An example sprayable erosion control product is composed of thermally processed wood fibre, wetting agents, and other ingredients. The product bonds with the soil surface and creates a porous and absorbent erosion resistant blanket that can last for up to 12 months.

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

The effectiveness of sprayable erosion control products to control wind erosion is evaluated using a standard risk model. Wind erosion risk classes for both bare soil and covered soil were determined using the methods of Coote and Pettapiece (1989). The following algorithm was evaluated to calculate the risk of wind erosion:

$$E = KC (V2 * - \gamma W2)1.5$$

Where:

E = maximum instantaneous soil movement by wind (dimensionless)

K = surface roughness and aggregation factor (dimensionless)

C = factor representing soil resistance to movement by wind (dimensionless)

V* = drag velocity of wind at the soil surface (cm/s)

γ = soil moisture shear resistance (dimensionless)

W = available moisture of the surface soil (m³ water m⁻³ soil)

The K, C and γ factors are provided in Coote and Pettapiece (1989). Wind speed data to calculate the V* factor were obtained from Environment Canada (Environment Canada 2014). Available moisture at the surface was estimated for each soil texture class based on data available in the soil layer table of the CanSIS (Soil Landscapes of Canada Working Group 2010). Wind erosion risk ratings are presented in Table 9A-5.

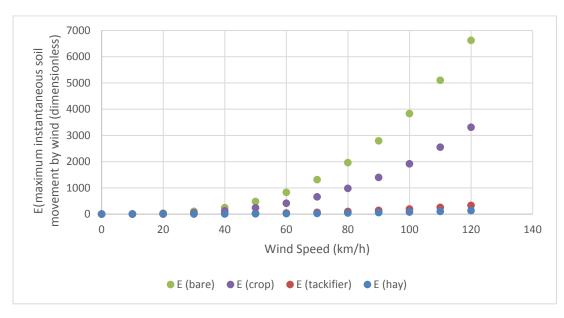
Table 9A-5 Wind Erosion Risk Ratings

E	Rating
<100	Negligible
100 to <250	Low
250 to <400	Moderate
400 to <700	High
700+	Severe

The rating system in Table 9A-5 is based on a land surface that is bare and unprotected (no vegetation or litter cover) with a non-crusted surface. Coote and Pettapiece (1989) developed a percentage reduction estimation of wind erosion for crops and crop groups. Hay crop cover has a 98% reduction factor and it is utilized because hayland is a common land use in the LAA. Soil covered with the tackifier is given a 95% risk reduction factor because after the tackifier is applied to the bare soil, it is expected to have greater than 98% ground cover and percent effectiveness is rated at greater than 95%.

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Each soil cover scenario (bare, crop, tackifier and hay) is rated with two coarse textured soils, fine sand and sandy loam. In addition, wind speeds from 0 to 120 km/h in 10 km/h increments are applied to each soil cover scenario and soil texture. Maximum hourly wind speed at the nearest weather station (Sprinkbank A) is 76 km/h and maximum gust speed at the nearest weather station that measures it (Calgary International Airport) is 120 km/h (Environment Canada 2014).


The following is a summary of the wind erosion risk ratings for fine sand textured soils (Figure 9A-2 and Table 9A-6):

- The wind erosion risk for bare soil is rated as severe in winds greater than 60 km/h.
- A crop with 50% ground cover is rated as severe in winds greater than 80 km/h.
- On ground covered with tackifier, the wind erosion risk is rated as negligible to low in winds up to 100 km/h
- On hayland, wind erosion risk is rated as negligible to low in winds up to 120 km/h.

The following is a summary of the wind erosion risk ratings for sandy loam textured soil (Figure 9A-3 and Table 9A-7):

- On bare soils, wind erosion risk is rated as severe in winds greater than 60 km/h.
- With a 50% crop cover, the wind erosion risk is rated as severe in winds greater than 80 km/h.
- On ground covered with tackifier, the wind erosion risk is rated as negligible to low in winds up to 120 km/h
- On hayland, wind erosion risk is rated as negligible in winds up to 120 km/h.

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Figure 9A-1 Find Sand Wind Erosion Risk Scenarios

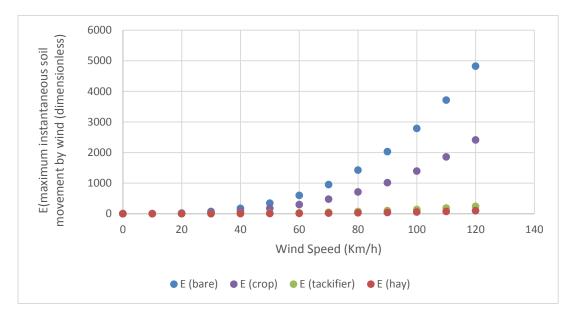


Figure 9A-2 Sandy Loam Wind Erosion Risk Scenarios

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-6 Find Sand Wind Erosion Risk Scenarios

Ground Cover	Ground Cover Reduction Factor (%)	Maximum Hourly Wind Speed (km/h) ¹	E ²	Wind Erosion Rating
Bare	0	0	0	Negligible
Bare	0	10	4	Negligible
Bare	0	20	30	Negligible
Bare	0	30	103	Low
Bare	0	40	244	Low
Bare	0	50	478	High
Bare	0	60	826	Severe
Bare	0	70	1313	Severe
Bare	0	80	1960	Severe
Bare	0	90	2792	Severe
Bare	0	100	3830	Severe
Bare	0	110	5099	Severe
Bare	0	120	6620	Severe
Crop	50	0	0	Negligible
Crop	50	10	2	Negligible
Crop	50	20	15	Negligible
Crop	50	30	51	Negligible
Crop	50	40	122	Low
Crop	50	50	239	Low

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-6 Find Sand Wind Erosion Risk Scenarios

Ground Cover	Ground Cover Reduction Factor (%)	Maximum Hourly Wind Speed (km/h) ¹	E ²	Wind Erosion Rating
Сгор	50	60	413	High
Crop	50	70	656	High
Crop	50	80	980	Severe
Crop	50	90	1396	Severe
Crop	50	100	1915	Severe
Crop	50	110	2549	Severe
Crop	50	120	3310	Severe
Tackifier	95	0	0	Negligible
Tackifier	95	10	0	Negligible
Tackifier	95	20	2	Negligible
Tackifier	95	30	5	Negligible
Tackifier	95	40	12	Negligible
Tackifier	95	50	24	Negligible
Tackifier	95	60	41	Negligible
Tackifier	95	70	66	Negligible
Tackifier	95	80	98	Negligible
Tackifier	95	90	140	Low
Tackifier	95	100	192	Low
Tackifier	95	110	255	Moderate

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-6 Find Sand Wind Erosion Risk Scenarios

Ground Cover	Ground Cover Reduction Factor (%)	Maximum Hourly Wind Speed (km/h) ¹	E ²	Wind Erosion Rating
Tackifier	95	120	331	Moderate
Нау	98	0	0	Negligible
Нау	98	10	0	Negligible
Нау	98	20	1	Negligible
Нау	98	30	2	Negligible
Нау	98	40	5	Negligible
Нау	98	50	10	Negligible
Нау	98	60	17	Negligible
Нау	98	70	26	Negligible
Нау	98	80	39	Negligible
Нау	98	90	56	Negligible
Нау	98	100	77	Negligible
Нау	98	110	102	Low
Нау	98	120	132	Low

NOTES:

¹ Maximum hourly wind speed is 76 km/h at the Springbank A Weather Station. Maximum gust speed is 120 km/h at the Calgary International Airport Weather Station (no maximum gust speed at the Springbank A Weather Station is available). Wind data are from Canadian Climate Normals 1981-2010 (Environment Canada 2014).

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-7 Sandy Loam Wind Erosion Risk Scenarios

Ground Cover	Ground Cover Reduction Factor (%)	Wind Speed (km/h) ¹	E ²	Wind Erosion Rating
Bare	0	0	0	Negligible
Bare	0	10	2	Negligible
Bare	0	20	21	Negligible
Bare	0	30	73	Negligible
Bare	0	40	176	Low
Bare	0	50	345	Moderate
Bare	0	60	599	High
Bare	0	70	953	Severe
Bare	0	80	1425	Severe
Bare	0	90	2030	Severe
Bare	0	100	2787	Severe
Bare	0	110	3711	Severe
Bare	0	120	4820	Severe
Crop	50	0	0	Negligible
Crop	50	10	1	Negligible
Crop	50	20	10	Negligible
Crop	50	30	37	Negligible
Crop	50	40	88	Negligible
Crop	50	50	173	Low

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-7 Sandy Loam Wind Erosion Risk Scenarios

Ground Cover	Ground Cover Reduction Factor (%)	Wind Speed (km/h) ¹	E ²	Wind Erosion Rating
Crop	50	60	299	Moderate
Crop	50	70	477	High
Crop	50	80	712	Severe
Crop	50	90	1015	Severe
Crop	50	100	1394	Severe
Crop	50	110	1856	Severe
Crop	50	120	2410	Severe
Tackifier	95	0	0	Negligible
Tackifier	95	10	0	Negligible
Tackifier	95	20	1	Negligible
Tackifier	95	30	4	Negligible
Tackifier	95	40	9	Negligible
Tackifier	95	50	17	Negligible
Tackifier	95	60	30	Negligible
Tackifier	95	70	48	Negligible
Tackifier	95	80	71	Negligible
Tackifier	95	90	102	Low
Tackifier	95	100	139	Low
Tackifier	95	110	186	Low

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

Table 9A-7 Sandy Loam Wind Erosion Risk Scenarios

Ground Cover	Ground Cover Reduction Factor (%)	Wind Speed (km/h) ¹	E ²	Wind Erosion Rating
Tackifier	95	120	241	Low
Нау	98	0	0	Negligible
Нау	98	10	0	Negligible
Нау	98	20	0	Negligible
Нау	98	30	1	Negligible
Нау	98	40	4	Negligible
Нау	98	50	7	Negligible
Нау	98	60	12	Negligible
Нау	98	70	19	Negligible
Нау	98	80	28	Negligible
Нау	98	90	41	Negligible
Нау	98	100	56	Negligible
Hay	98	110	74	Negligible
Нау	98	120	96	Negligible

NOTES:

¹ Maximum hourly wind speed in the summer months is 76 km/h at the Springbank A Weather Station. Maximum gust speed is 120 km/h at the Calgary International Airport Weather Station (no maximum gust speed at the Springbank A Weather Station is available). Wind data are from Canadian Climate Normals 1981-2010 (Environment Canada 2014).

² E – a dimensionless index of wind erosion risk (Coote and Pettapiece 1989).

Attachment 9A Terrain and Soils Additional Data for Assessment 3B March 2018

9A.4 REFERENCES

- Alberta Agriculture 2016. Alberta Weather Station Data Viewer. Alberta Climate Information Service. http://agriculture.alberta.ca/acis/alberta-weather-data-viewer.jsp (date of access 12/19/2016).
- Alberta Government. 2013. Evaporation and Evapotranspiration Rates in Alberta. Alberta Environment and Sustainable Resource Development. Edmonton, AB.
- Brady N.C. and R.R. Weil. 2010. Elements of the nature and properties of soils. 3rd edition. Prentice Hall. Boston, MA.
- Coote, D.R. and W.W. Pettapiece. 1989. Wind Erosion Risk Alberta. Canada-Alberta Soil Inventory, Land Resource Research Centre, Research Branch, Agriculture Canada.
- Environment Canada. 2014. 1981-2010 Climate Normals and Averages. Available at: http://climate.weather.gc.ca/climate_normals/index_e.html#1981.
- Environment Canada. 2016. Summary of Canadian Climate Normal Data for Springbank A, AB (1981 to 2010).
- Larney, F.J., M.S. Bullock, S.M. McGinn, and D.W. Fryrear. 1995. Quantifying wind erosion of summer fallow in southern Alberta. Journal of Soil and Water Conservation. Volume 50, no. 1, pp. 91-95.
- McKenna Neuman, C. 1993. A review of Aeolian transport processes in cold environments. Progress in Physical Geography. Volume 17, issue 2, pp. 137-155.
- Soil Landscapes of Canada Working Group, 2010. Soil Layer Table version 2.0. In "Soil Landscapes of Canada version 3.2. Agriculture and Agri-Food Canada. (digital map and database at 1:1 million scale)". Electronic document: http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html. Accessed 15 Dec 2016.
- Walker, B.D. 2006. Drought Monitoring Network: Site and soil descriptions 2002-2005. Conservation and Development Branch, Alberta Agriculture, Food and Rural Development. Edmonton, AB. 125 pp.

SPRINGBANK OFF-STREAM RESERVOIR PROJECT Environmental Impact Assessment

Volume 4: Appendices Appendix G: Terrain and Soils

Terrain and Soils Technical Data Report

Prepared for: Alberta Transportation

Prepared by: Stantec Consulting Ltd.

March 2018

SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT TERRAIN AND SOILS TECHNICAL DATA REPORT

Table of Contents

ABBRE	VIATIONS.		V
1.0	INTRODUC		1.1
1.1	STUDY AR	ΕΑ	1.1
1.2			
	1.2.1	Physiography	
	1.2.2	Bedrock Geology	
	1.2.3	Quaternary History	
	1.2.4	Surficial Materials	
	1.2.5	Natural Subregions and Soil Correlation Areas	1.6
	1.2.6	Land Use	
2.0	TERRAIN		2.1
2.1	TERRAIN N	Aethods	2.1
	2.1.1	Preliminary Mapping	2.1
	2.1.2	Field Surveys	
	2.1.3	Final Mapping	2.4
2.2	TERRAIN R	RESULTS	2.4
	2.2.1	Surface Materials	2.4
2.3	TERRAIN S	UMMARY	2.15
3.0	SOILS		3.1
3.1	SOILS MET	HODS	
	3.1.1	Review of Existing Data	
	3.1.2	Field Surveys	3.5
	3.1.3	Laboratory analyses	3.6
	3.1.4	Mapping	3.7
	3.1.5	Data Analyses	
	3.1.6	Quality Control (QC)	
3.2	SOILS RES	ULTS	
	3.2.1	Soil Map Units in the LAA	
	3.2.2	Dominant Soil Orders in the LAA	3.19
	3.2.3	Surficial Geology and Geomorphology Characteristics in the LAA	2 21
	2 2 4	Dominant Soil Orders in the RAA	
	3.2.4 3.2.5		3.28
	3.2.3	Surficial Geology and Geomorphology Characteristics in the RAA	3.30
	3.2.6	Topography and Soil Development	
3.3		1MARY	
	3.3.1	LAA	
4.0	REFERENC	ES	4.1

LIST OF TABLES

Table 2-1	Terrain Stability Classes and Terminology	2.2
Table 2-2	Distribution of Surface Materials in the Terrain and Soils LAA	
Table 2-3	Distribution of Terrain Stability Classes Mapped within the LAA	
Table 3-1	AGRASID Map Units in the LAA	
Table 3-2	AGRASID Key Characteristics of the Soil Series in the LAA	
Table 3-3	Soil Inspection Sites Completed in the LAA	
Table 3-4	Soil Series in the LAA	
Table 3-5	Soil Map Unit Numbers and Description	
Table 3-6	Slope Classes	
Table 3-7	Value of the Maximum Instantaneous Soil Movement by Wind and	
	Associated Wind Erosion Rating	3.12
Table 3-8	Water Erosion Class	
Table 3-9	Compaction Risk Matrix	
Table 3-10	Rating System for Rutting Risk	
Table 3-11	Soil Series and Sampling Site IDs in the LAA	
Table 3-12	Land Capability Classes for Agricultural Production	
Table 3-13	Land Capability Subclasses for Agricultural Production	
Table 3-14	Reclamation Suitability Classification	
Table 3-15	Soil Orders in the LAA	
Table 3-16	Dominant Surficial Materials	
Table 3-17	LAA Soil Map Unit Legend – Part One	3.23
Table 3-18	Soil Orders in the RAA	
Table 3-19	Dominant Surficial Materials in the RAA	3.32
Table 3-20	RAA Soil Map Unit Legend	3.33
Table 3-21	Extent of Slope Classes in the LAA- Soil Mapping	
Table 3-22	Estimated Topsoil and Subsoil Depths for Soil Map Units in the LAA	
Table 3-23	Wind Erosion Ratings by Map Unit for Topsoil in the LAA	
Table 3-24	Wind Erosion Ratings by Map Unit for Upper Subsoil in the LAA	
Table 3-25	Wind Erosion by Rating for Topsoil and Subsoil in the LAA	3.45
Table 3-26	Water Erosion Risk Ratings by Map Unit for Topsoil in the LAA	3.48
Table 3-27	Water Erosion Risk Ratings by Map Unit for Subsoil in the LAA	3.50
Table 3-28	Water Erosion by Rating for Topsoil and Subsoil in the LAA	3.51
Table 3-29	Topsoil Compaction Risk Ratings for Soil Map Units in the LAA	3.55
Table 3-30	Subsoil Compaction Risk Ratings for Map Units in the LAA	3.56
Table 3-31	Topsoil Compaction Summary in the LAA	3.57
Table 3-32	Subsoil Compaction Summary in the LAA	3.57
Table 3-33	Rutting Risk Ratings for Topsoil and Subsoil in Soil Map Units in the	
	LAA	
Table 3-34	Topsoil Rutting Risk Summary in the LAA	3.62
Table 3-35	Subsoil Rutting Risk Summary in the LAA	
Table 3-36	Agricultural Land Capability Ratings for Map Units in the LAA	3.67
Table 3-37	Agricultural Land Capability Summary of the LAA	3.69
Table 3-38	Reclamation Suitability Ratings for First Lift of Map Units in the LAA	3.71

SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT TERRAIN AND SOILS TECHNICAL DATA REPORT

Table 3-39	Reclamation Suitability Ratings for Second Lift of Map Units in the	3.72
Table 3-40 Table 3-41	LAA First Lift Reclamation Suitability Ratings in the LAA Second Lift Reclamation Suitability Ratings in the LAA	3.73
12016 2-41	Second Lift Reclamation Suitability Ratings in the LAA	3.73
LIST OF PHO	TOS	
Photo 2-1	Field Photo Showing Typical Glaciolacustrine Deposit in the LAA	2.5
Photo 2-2	Field Photo Showing Typical Till Deposit in the LAA	
Photo 2-3	Field photo of the Elbow River flood plain showing the spatial	
	variability in the texture of fluvial deposits	2.7
Photo 2-4	Field photos showing poorly drained soils occurring in depression	
	within open pasture field in LAA	2.8
Photo 2-5	Field photo showing colluvium deposits, derived from	
	glaciolacustrine material on over-steepened scarps adjacent to	
	the Elbow River	2.9
Photo 2-6	Field Photo Showing Typical Flat to Gently Sloping Topography	
	within the LAA	2.11
Photo 2-7	Field photo showing slopes rated as moderate likelihood for	
	landslide initiation	2.12
Photo 2-8	Debris Avalanche Along the Elbow River Scarps Exposing	
	Glaciolacustrine Silt and Clay Overlying Consolidated Clay Till.	2.13
Photo 2-9	Field Photo of Surficial Material Slump in Glaciolacustrine Silt and	
	Clay on the Elbow River Scarps	2.14

LIST OF FIGURES

Figure 1-1	Soils and Terrain Regional Assessment Area (RAA) and Local	
0	Assessment Area (LAA)	1.2
Figure 1-2	Physiographic Regions	1.4
Figure 1-3	Bedrock Geology	1.7
Figure 3-1	Soil Inspection and Sampling Sites in the LAA	3.2
Figure 3-2	Soil Map Units in the LAA	3.20
Figure 3-3	Soil Textural Classes in the LAA	3.27
Figure 3-4	Soil Map Units in the RAA	3.29
Figure 3-5	Soil Textural Classes in the RAA	3.35
Figure 3-6	Slope Classes in the LAA	
Figure 3-7	Topsoil Depths in the LAA	3.40
Figure 3-8	Subsoil Depths in the LAA	3.41
Figure 3-9	Topsoil Wind Erosion Risk Ratings in the LAA	3.46
Figure 3-10	Subsoil Wind Erosion Risk Ratings in the LAA	3.47
Figure 3-11	Topsoil Water Erosion Risk Ratings in the LAA	3.52
Figure 3-12	Subsoil Water Erosion Risk Ratings in the LAA	3.53
Figure 3-13	Topsoil Compaction Risk Ratings in the LAA	3.58
Figure 3-14	Subsoil Compaction Risk Ratings in the LAA	3.59
Figure 3-15	Topsoil Rutting Risk Ratings in the LAA	

SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT TERRAIN AND SOILS TECHNICAL DATA REPORT

Figure 3-16	Subsoil Rutting Risk Ratings in the LAA	3.64
0	Agricultural Land Capability Class for the LAA	
-	First Lift Reclamation Suitability for the LAA	
Figure 3-19	Second Lift Reclamation Suitability for the LAA	3.75

LIST OF ATTACHMENTS

ATTACHMENT A TERRAIN MAP BOOK

ATTACHMENT B TERRAIN MAP LEGEND

ATTACHMENT C SOILS DATA ATTACHMENT

- C.1 Soil Map Unit Description Tables
- C.2 Soil Horizon Attachment
- C.3 Soil Site Attachment
- C.4 Lab Summary Table
- C.5 Maxxam Analytics COC Documents

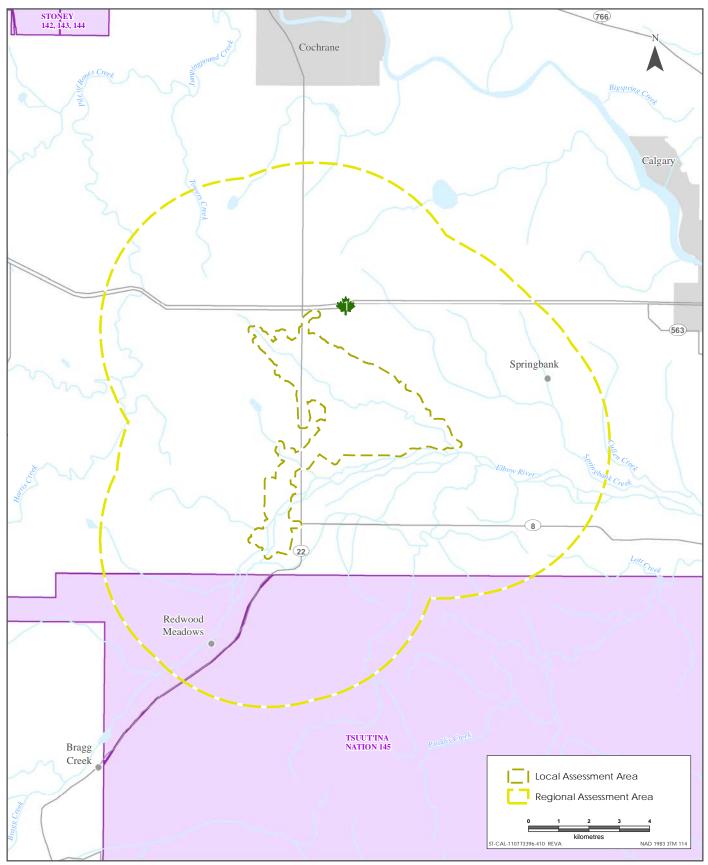
Abbreviations

AFPA/LFS	Alberta Forest Products Association/Land and Forest Service
AGRASID	Agricultural Regions of Alberta Soil Inventory Database
CALA	Canadian Association for Laboratory Accreditation Inc.
CanSIS	Canadian Soil Information System
GIS	global information system
GPS	Global Positioning System
LAA	Local Assessment Area
Lidar	Light Detection and Ranging
QC	Quality Control
RAA	Regional Assessment Area
RUSLEFAC	Revised Universal Soil Loss Equation for Application in Canada
SAR	sodium adsorption ratio
SCA	Soil Correlation Area
SIL	Survey Intensity Level
the Project	Springbank Off-stream Reservoir Project
TSIL	terrain survey intensity level

Introduction March 2018

1.0 INTRODUCTION

This Technical Data Report supports the terrain and soils environmental assessment for the Springbank Off-stream Reservoir Project (the Project) in the following areas:


- provides a general description of the geology, topography, landforms, soils, and geomorphic processes present in the terrain and soils Local Assessment Area (LAA),
- describes methods and presents results for terrain and terrain stability mapping of the LAA, and the terrain field inventory program,
- describes methods and presents results for the detailed soil survey, and soils mapping of the LAA,
- provides evaluations of potential risks for water and wind erosion, rutting and compaction, and
- provides ratings of agricultural land capability and reclamation suitability based on soil characteristics and laboratory analysis associated with mapped soil units

1.1 STUDY AREA

The LAA for terrain and soils is the project development area (PDA) plus a 100 m buffer and an additional extension of approximately 200 m south of the dam to include the scarps adjacent to the Elbow River. The entire terrain and soils LAA encompasses an area of 1,886.5 ha.

The regional assessment area (RAA) is the PDA plus a modified 5 km buffer. The terrain and soils RAA encompasses an area of 22,540.2 ha. This RAA is includes the Foothill Parkland Natural Subregion but not the Montane Natural Subregion (west of the Project and higher in elevation). The prevailing wind direction in the summer is westerly or southwesterly (Environment and Climate Change Canada 1981-2010). Similarly, effects north and south will be restricted to the Elbow river watershed, and are unlikely to extend beyond this. The eastern boundary of the RAA is between the town of Springbank and the western edge of the City of Calgary.

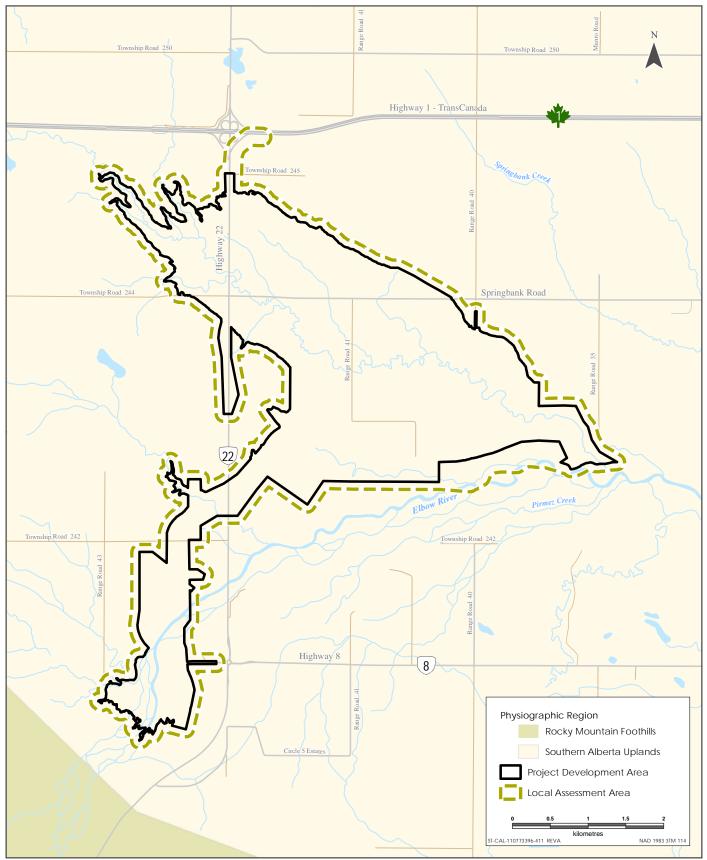
Sources: Base Data - ESRI, Natural Earth, Government of Alberta, Government of Canada Thematic Data - ERBC, Government of Alberta, Stantec Ltd

Soils and Terrain Regional Assessment Area (RAA) and Local Assessment Area (LAA)

Introduction March 2018

1.2 PROJECT SETTING

This section describes the physical setting of the LAA based on a review of existing background information collected from a variety of sources including (but not limited to):


- satellite imagery and air photos,
- digital surficial geology data,
- bedrock geology data from the Alberta Geological Survey,
- soil survey maps and reports, and
- publicly available scientific literature relevant to the quaternary history in the area

1.2.1 Physiography

The Project PDA is located within western Alberta, approximately 15 km west of Calgary, and 10 km south of the town of Cochrane. It is within the Springbank District of the Calgary Urban Area (Moran 1986); this area is bounded to the west by the Rocky Mountain Foothills, and by river valleys and hilly terrain along its remaining perimeter. The Project PDA lies within the Okotoks Uplands District of the Western Benchlands Section of the Southern Alberta Uplands Physiographic Region (Figure 1-2). The region is characterized by low relief, undulating and hummocky surface expressions, with some rolling areas controlled by underlying bedrock (Pettapiece 1986).

The PDA comprises a flood berm, diversion structure, diversion channel, an earthen dam and reservoir area. The flood berm is located on the Elbow River, with the diversion structure located on the scarp northwest of the flood plain. The diversion channel, dam and reservoir area are located on the plateau to the northwest of the river. An unnamed tributary to the Elbow River disects the sediments in the reservoir area; it crosses the area from the northwest and joins the Elbow River in the southeast.

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Physiographic Regions

Introduction March 2018

1.2.2 Bedrock Geology

The LAA is underlain by Paleogene-aged sedimentary rocks of the Paskapoo Formation, and Upper Cretaceous-aged sedimentary rocks from the Coalspur Formation, Brazeau Formation, and the Alberta and Smokey groups. These comprise sandstone, siltstone, mudstone, and shale (Prior et al. 2013; Figure 1-3).

1.2.3 Quaternary History

During the latest Late Wisconsinan Glaciation (approximately 27,000-30,000 years ago), the Calgary area was overridden by ice from both the Cordilleran Ice Sheet, advancing from the mountains in the northwest, and the Laurentide Ice Sheet, advancing from the east. The earliest advance of ice into the Calgary area in the Late Wisconsinan, was from a valley glacier advancing eastwards from the foothills down the Bow River valley (Moran 1986). As it advanced, this glacier encountered the Laurentide Ice Sheet, and was diverted southward along the mountain front (Jackson 1980). Ice flow from the foothills slowed and eventually the westward flowing Laurentide Ice overrode stagnant ice and deposits from the initial advance (Jackson 1980; Moran 1986). As the climate warmed the Laurentide Ice Sheet dammed meltwater from the retreating mountain glaciers and runoff from streams in the Rocky Mountains, resulting in the formation of a series of glacially-dammed lakes during its complex retreat (Moran 1986).

A glacial lake occupied the unnamed creek valley throughout the retreat phases, resulting from the Laurentide Ice Sheet blocking drainage of meltwater from the Foothills through the Elbow River valley. The location and extent of this lake changed over time as the Laurentide Ice retreated and spillways opened up. At this glacial lake's largest extent, it merged with the glacial lake in the Bow River valley, with a water level of about 1,220 meters above sea level. However, as the Laurentide Ice retreated, the glacial lake migrated eastward with the ice front and dropped to a level of 1,150 meters when a tunnel beneath the ice opened along the eastern end of the Sarcee upland (Figure 24 in Moran 1986).

1.2.4 Surficial Materials

The existing 1:50,000-scale mapping for the Calgary Urban Area (Moran 1986) provides a general overview of surficial materials in the LAA. The area is predominantly mapped as comprising of silt and clay glaciolacustrine offshore deposits. However, a significant portion of the LAA in mapped as Spy Hill Drift overlying rocks from the Porcupine Hills Formation¹. This material is a pebble-loam till overlying sandstone, siltstone and mudstone, and was deposited by the earliest Late Wisconsinan ice advance into Calgary from the foothills. Scattered bedrock outcrops and the fluvial sediments of the modern Elbow River constitute relatively minor coverage of the LAA.

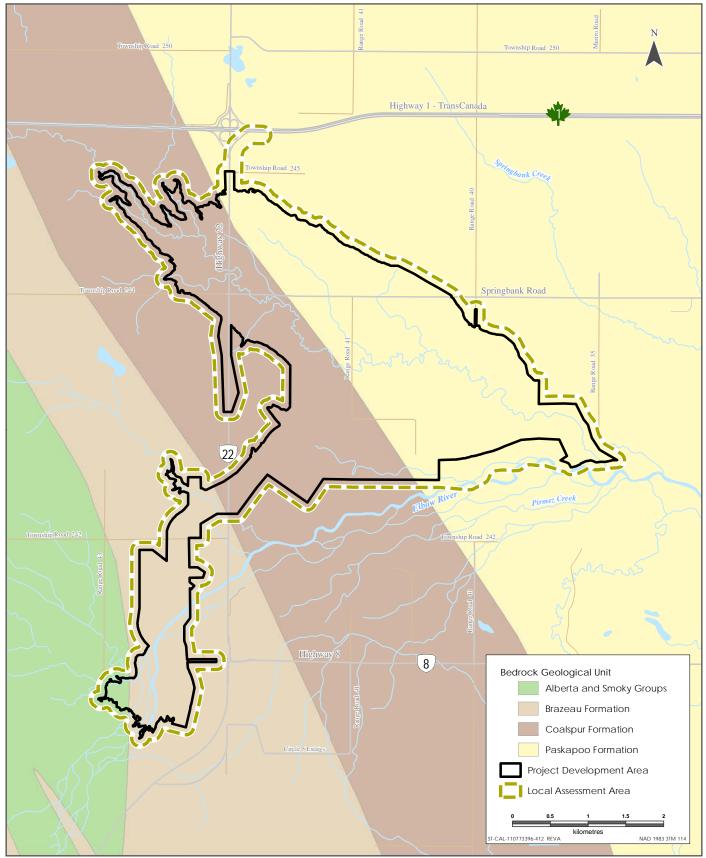
¹ The Porcupine Hills Formation is equivalent to the Paskapoo Formation without coal beds.

Introduction March 2018

Areas of glaciofluvial and modern fluvial sediments, characterized as silt overlying gravel possibly with minor sand, are subordinate in the LAA and mapped in smaller units along the Elbow River.

Moran (1986) notes that slope failures are uncommon in the Calgary Urban Area, and are generally restricted to steep slopes along major river valleys. Moran (1986) makes the observation that slope failures are most common in thick, erodible, silt and fine sand-dominated lacustrine sediment.

1.2.5 Natural Subregions and Soil Correlation Areas


The LAA is located within the Foothills Parkland Natural Subregion of Alberta (Natural Regions Committee 2006). The Foothills Parkland Natural Subregion has cooler summers and shorter growing seasons, but warmer winters and more precipitation than other parkland Natural Subregions. The average annual precipitation is approximately 517 mm, with most precipitation falling between April and August. The mean annual temperature is 3.0°C ranging from monthly averages of 14.8°C in July to -7.0°C in December (1981-2010 Climate Normals at Springbank Airport). The average frost free period is approximately 76 days.

Soil Correlation Areas (SCAs) are delineated based on the relationship between climate and soil development (Bock et al. 2006) while the Natural Subregion divisions are defined by a combination of climate, vegetation, soil and physiographic features. Although the SCA and Natural Subregion boundaries are not perfectly matched, both classification systems contribute to an understanding of soil distribution. The LAA is in SCA 8 (Thick *Black Soil Zone of South-Western Alberta*) and is dominated by Black and Dark Grey Chernozems (Bock et al. 2006). Deep Orthic Black Chernozems with surface humus horizons at least 15 cm thick are the most common soil types, and are associated with grassland and open woodland vegetation. Orthic Dark Gray Chernozemic soils are typically associated with forested areas. Seepage areas are common on lower slope positions and depressions, which typically support willow shrublands (Natural Regions Committee 2006). This seepage is well oxygenated, which supports classification of moist Chernozems rather than Gleysols in some wetter than typical conditions. Orthic Gleysols occur in the wettest, mostly poorly drained areas.

1.2.6 Land Use

Land uses within the LAA include residences, improved pasture, native pasture, crop, hayland, and undisturbed forest/riparian land. Land Use within the LAA is further explored in Volume 4, Appendix M. Agricultural land capability is presented in Section 3.2.

Sources: Base Data - Government of Alberta, Government of Canada, Alberta Geological Survey. Thematic Data - Stantec Ltd.

Bedrock Geology

Terrain March 2018

2.0 TERRAIN

2.1 TERRAIN METHODS

2.1.1 Preliminary Mapping

Preliminary desktop terrain mapping was completed for the LAA at 1:20,000-scale in April 2015 using a combination of colour, 1:10,000-scale (2013) orthophotos, Bing Maps imagery from 2014, and Light Detection and Ranging (LiDAR) data. The LiDAR data was processed to produce bare-earth hillshade imagery, a slope percentage map, and 1 meter contours. Bare-earth hillshade imagery allows for more accurate delineation of landforms and identification of slope breaks, which might otherwise be obscured by vegetation.

Because there is no standard for terrain mapping in Alberta, the mapping methods are based on standards and guidelines used in the Province of British Columbia (Resources Inventory Committee 1996; Howes and Kenk 1997). Relatively homogeneous terrain units (polygons) are delineated with the following attributes:

- surficial material (e.g., till, organics, glaciolacustrine, bedrock)
- surface expression (e.g., blanket, undulating, terraced, hummocky)
- geomorphological processes (e.g., landslides, active gullying)
- slope steepness range in percent
- soil drainage (e.g., rapid, well, moderately well, imperfect, poor, very poor) (Section 5.2)
- terrain stability class (e.g., I-V, see Table 2-1)

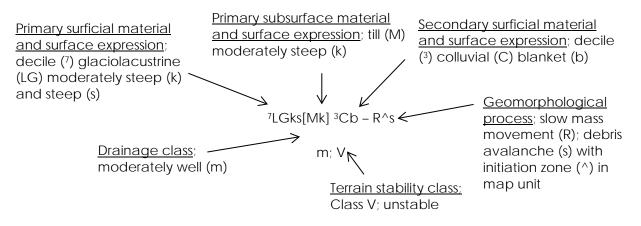
A simplified terrain map legend is provided in Section 5.2. See Howes and Kenk (1997) for a detailed explanation of terrain symbols (terrain polygon label).

Terrain March 2018

Terrain Stability Class	Description ^{1, 2}
I	Expected to have a negligible likelihood of landslide initiation following right-of-way forest clearing or access road construction
II	Expected to have a very low likelihood of landslide initiation following right-of-way forest clearing or access road construction
111	Expected to have a low likelihood of landslide initiation following right-of-way forest clearing or access road construction"
IV	Expected to contain areas with a moderate likelihood of landside initiation following right-of-way forest clearing or access road construction
V	Expected to contain areas with a high likelihood of landslide initiation following right-of- way forest clearing or access road construction
NOTES:	

¹ These are qualitative interpretations adapted from BCMOF and BCMOE (1999) and Chatwin et al. (1994). The classification addresses landslides greater than 0.05 ha in size and applies to conventional forest clearing practices and conventional cut and fill resource road construction. It makes no inferences about the potential effects of dam construction.

² Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These areas may not have been delineated due to the mapping scale.


All terrain polygons are assigned a soil drainage class (excluding open water). Soil drainage classes are relative, qualitative descriptions of the removal of water from a soil in relation to water supply. The drainage classes used in this assessment are derived from the Canadian Soil Information System (CanSIS²) and consist of the following: very poor, poor, imperfect, moderately well, well, rapid and very rapid. Terrain polygons are assigned up to two soil drainage classes, based on interpreted soil drainage variability within a given polygon.

[🚺] Stantec

² http://sis.agr.gc.ca/cansis/nsdb/soil/v1/snt/drainage.html

Terrain March 2018

A terrain map book was produced at a scale of 1:5,000 (see Section 5.1). Each terrain has a label as follows:

The terrain polygons can be composed of up to three types of surficial materials. Proportions of each type of material are expressed with deciles included in the terrain symbol.

2.1.2 Field Surveys

A terrain field inventory program was conducted between June 27 and July 4, 2016.

Approximately 60 field sites were pre-selected during the desktop terrain study for areas of higher likelihood of landslide initiation or reactivation. Sites were distributed throughout the LAA to ensure that materials and landscape types were adequately sampled to verify the surficial geology and their physical characteristics.

A total of 66 formal terrain sites (41percent) were visited out of 162 mapped polygons to attain terrain survey intensity level (TSIL) C (20-50 % polygon ground checking). Following ground disturbance protocols, shallow (less than 1 metre) hand-dug soil pits were completed at each site. Global positioning system (GPS) coordinates were taken at each site along with digital photographs. Data was collected on slope and aspect, surficial material type (e.g., till, glaciolacustrine), surface expression (e.g., undulating, steep, etc.), estimated depth-to-bedrock, coarse fragment content, sorting and structure of sediment (e.g., matrix or clast-supported), matrix texture (e.g., clayey silt), soil drainage (e.g., moderately well, poor), and geomorphological processes (e.g., gullying, mass wasting). Notes were also made on terrain stability (e.g., tension cracks, up-turned roots, landslides, buried soil).

Terrain March 2018

2.1.3 Final Mapping

The preliminary terrain mapping was reviewed and compared with data collected from both the terrain and soils field surveys. Changes were made to terrain polygon labels where appropriate, and textures were added to polygons that had been field checked. Final terrain mapping and terrain stability ratings were reviewed by a senior terrain mapper and edits were incorporated. The final terrain and terrain stability mapping is presented in Section 5.1.

2.2 TERRAIN RESULTS

2.2.1 Surface Materials

Surficial materials are presented in the terrain mapping for the terrain and soils Local Study Area (Section 5.1). Table 2-2 provides a statistical summary of the surficial materials mapped in the LAA.

Surface Material	Area (Ha)	Percentage of Total Area (%)
Glaciolacustrine (LG)	1,311.8	69.5
Till (M)	254.2	13.5
Fluvial (F)	271.3	14.4
Organic (O)	35.4	1.9
Glaciofluvial (FG)	8.1	0.4
Colluvium (C)	4.0	0.2
Open water (N)	1.0	0.1
Bedrock (R)	0.6	0.0
Total	1,886.4	100.0

Table 2-2 Distribution of Surface Materials in the Terrain and Soils LAA

Glaciolacustrine material, deposited in or along the margins of ice-dammed lakes, is the most common surficial material, comprising over 1,312 ha and almost 70 percent of the LAA. Glaciolacustrine material covers most of the central part of the LAA; including the area underlying the earthen dam, and the area behind the dam, to the northwest, surrounding Springbank Creek; and most of the diversion channel. The glaciolacustrine deposits mostly occur as flat to gently sloping or gently undulating deposits, and are relatively thick (greater than 3 m). However, some glaciolacustrine blankets (1–3 m) were mapped overlying till deposits on the sloping topography along the edges of the PDA. Some steep (greater than 70%) glaciolacustrine deposits were also mapped on the scarps overlooking the Elbow River and adjacent to the unnamed tributary. The glaciolacustrine deposits in the LAA predominantly have a silty clay texture with no coarse fragments (Photo 2-1).

Terrain March 2018

Photo 2-1 Field Photo Showing Typical Glaciolacustrine Deposit in the LAA

Till material, deposited directly by glacier ice, is the second most common sufficial material, comprising almost 14% and almost 254 ha of the LAA. Till is mainly found on the sloping terrain on the eastern edge of the PDA, and is exposed in the scarps eroded by the Elbow River. Field studies in the LAA found that the till is typically greater than 3 m thick, and predominantly has a clayey silt texture with 10–20% coarse fragments (Photo 2-2).

Terrain March 2018

Photo 2-2 Field Photo Showing Typical Till Deposit in the LAA

Fluvial material, transported and deposited by rivers and streams, I, comprises 14% and over 271 ha of the LAA. The largest deposit of fluvial material is found adjacent to the Elbow River in a large floodplain, which is likely several metres thick. This deposit underlies the intake for the proposed diversion channel. Fluvial deposits are also mapped along unnamed creek; however, these deposits typically occur as fluvial veneers (less than 1 m thick). Field studies in the LAA found the texture of fluvial deposits to be highly variable and range from clayey silt to sandy pebbly deposits (Photo 2-3).

Terrain March 2018

Photo 2-3 Field photo of the Elbow River flood plain showing the spatial variability in the texture of fluvial deposits

Organic material, resulting from the accumulation of vegetative matter, comprises almost 2% and 35 ha of the LAA. The largest area of organic material has accumulated on the Elbow River floodplain. Organic material generally accumulates in poorly drained areas. Poorly drained areas occurring in depressions within open pasture fields, such as in Photo 2-6, are common in the LAA. These were initially mapped as organic veneers during the preliminary mapping phase of the Project, however field studies in the LAA found that very little or no organic material has accumulated in these areas (Photo 2-4).

Terrain March 2018

Photo 2-4 Field photos showing poorly drained soils occurring in depression within open pasture field in LAA

Glaciofluvial material transported and deposited directly by glacial meltwater streams, covers over 8 ha of the LAA and accounts for 0.4% of the surficial materials. Glaciofluvial deposits generally have a sandy textured matrix with relatively high gravels content. Glaciofluvial deposits are mapped around the area where the unnamed tributary meets the Elbow River flood plain.

Colluvium deposits, which have reached their present position as a direct result of gravityinduced movements, comprise less than 1% and almost 4 ha of the surface materials in the LAA. Colluvium is mainly located along the scarps of the Elbow River, where slopes have been over steepened by down cutting of the river, and are often undercut by the river causing landslide initiation on the slopes. The texture of colluvial material generally reflects the material from which it was derived. The fine-grained glaciolacustrine material in the PDA is prone to landslide

Terrain March 2018

initiation, particularly when slopes have been over-steepened, for example the Elbow River scarps (Photo 2-5).

Photo 2-5 Field photo showing colluvium deposits, derived from glaciolacustrine material on over-steepened scarps adjacent to the Elbow River

Bedrock outcrops account for only 0.02% and cover less than 1 ha of the LAA. Thick (greater than 3 m) glacial deposits blanket the underlying bedrock in the LAA. Those outcrops that are present are exposed along or close to the Elbow River scarps.

Terrain March 2018

2.2.1.1 Terrain Stability

Table 2-3 provides a summary of terrain stability conditions mapped within the LAA.

Table 2-3	Distribution of Terrain Stability Classes Mapped within the LAA
-----------	---

Terrain Stability Class	Total Area (ha)	Percent (%)
I	1743.5	92.4
П	55.5	2.9
Ш	64.3	3.4
IV	9.6	0.5
V	12.6	0.7
Water	1.0	0.1

For the most part, the LAA consists of flat to undulating terrain with negligible to low likelihood of landslide initiation. Almost 99 percent of the LAA is rated as terrain stability class I–III (benign or relatively stable). These benign areas mainly consist of flat to gently sloping or gently undulating glaciolacustrine deposits, fluvial plains, and gently sloping till deposits (Photo 2-6).

Terrain March 2018

Photo 2-6 Field Photo Showing Typical Flat to Gently Sloping Topography within the LAA

Over 9 ha, or 0.5%, of the LAA is rated as terrain stability class IV (Table 3-4). Slopes rated as terrain stability class IV are steep slopes that have a moderate likelihood for landslide initiation. Slopes rated as terrain stability class IV are mainly located along the Elbow River scarps (Photo 2-9), and along unnamed tributary close to where it joins the Elbow River. These slopes range from 25–70% in steepness and are mainly composed of till or glaciolacustrine material.

Terrain March 2018

Photo 2-7 Field photo showing slopes rated as moderate likelihood for landslide initiation

Less than 12 ha, or 0.7%, of the LAA is rated as terrain stability class V (Table 2-3). Polygons rated as terrain stability class V are steep slopes that contain active landslides and/or show evidence of high likelihood of landslide initiation. These are all located along the Elbow River scarps. The Elbow River scarps mainly expose glaciolacustrine deposits overlying till overlying bedrock. Landslides are common on these slopes (Photo 2-8) and often associated with oversteepening due to bank erosion. Slumps are particularly common in the glaciolacustrine deposits. (Photo 2-9), whereas debris avalanches are more common in the till deposits.

Terrain March 2018

Photo 2-8 Debris Avalanche Along the Elbow River Scarps Exposing Glaciolacustrine Silt and Clay Overlying Consolidated Clay Till.

Terrain March 2018

Photo 2-9 Field Photo of Surficial Material Slump in Glaciolacustrine Silt and Clay on the Elbow River Scarps

Terrain March 2018

2.3 TERRAIN SUMMARY

Over 92% of the terrain and soils LAA is underlain by terrain than is stable with negligible to low likelihood of landslide initiation. This terrain mostly consists of flat to gently undulating glaciolacustrine deposits, which are relatively thick (greater than 3 m) and have silty clay textures with little to no coarse fragments. Other terrain with negligible to low likelihood of landslide initiation include fluvial plains and gently sloping till deposits.

Less than 1% of the LAA comprises slopes that are rated as moderately likelihood of landslide initiation. These slopes are located mainly along the south bank of unnamed tributary and on the scarps adjacent to the Elbow River.

Only 0.7% (12 ha) of the LAA comprises slopes that are rated as high likelihood of landslide initiation. These areas include scarps actively eroded by the Elbow River and are mainly composed of glaciolacustrine deposits overlying till and bedrock. Landslides are common on these slopes, mainly debris avalanches and slumps.

Soils March 2018

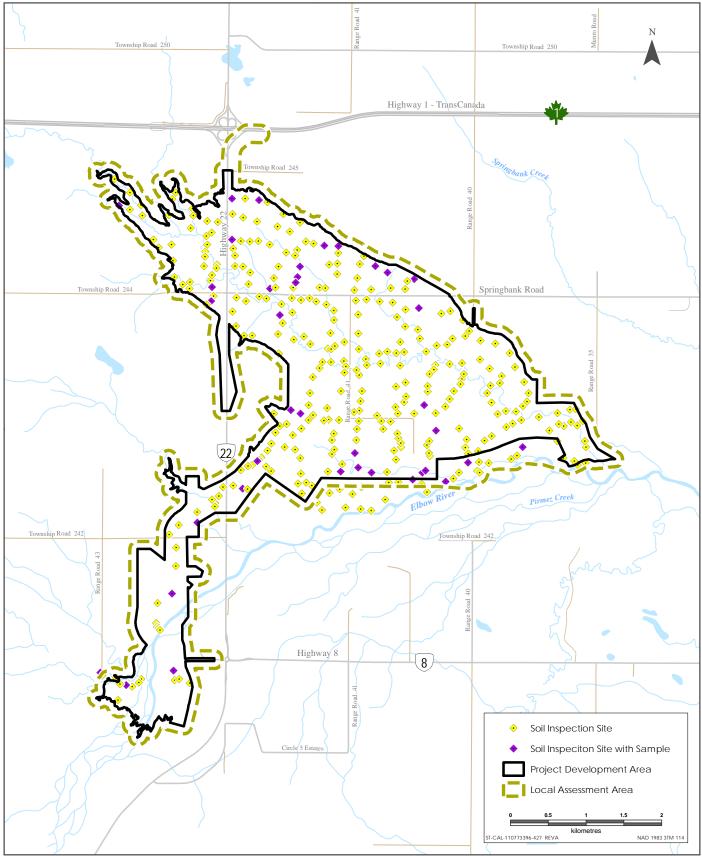
3.0 SOILS

3.1 SOILS METHODS

The methods employed for this soil information include both desktop and fieldwork. Soils mapping at 1:50,000 scale was undertaken to produce the soil information appendix. Soil inspection sites and soil sampling locations in the LAA are shown in Figure 3-1.

3.1.1 Review of Existing Data

3.1.1.1 Historical Data


A desktop assessment of existing data sources and literature to compile existing soils information for both the LAA and RAA included Agricultural Regions of Alberta Soil Inventory Database ([AGRASID] 2001) online viewer and the Soil Survey of the Calgary urban perimeter report (MacMillan 1987). Applicable information from these sources is summarized below and discussed further in the results section for the RAA.

The surficial geology as described in the Soil Survey of the Calgary urban perimeter report described the till commonly found in the LAA as a mixed till that had been deposited by a glacier that advanced out of the Athabasca and other major valleys north of Calgary and was deflected southeast upon encountering the margin of the Laurentide glacier (MacMillan 1987). The glaciolacustrine sediment mapped in the area is fine-textured, associated with deeper, quiet water environments. It was deposited mainly in proglacial lakes that formed where meltwater was trapped between the margins of retreating glaciers and the regional slope (MacMillan 1987).

Proportionally smaller areas of the LAA are mapped as glaciofluvial or fluvial parent materials (gravel, sandy gravel, sand and sandy loam), commonly deposited by the Elbow river and in some of the larger streams. The gravel in these deposits is generally well rounded and well sorted and is associated with the level to gently sloping topography of valley floors and terraces (MacMillan 1987). In areas of the LAA where meltwater channels emptied into glacial lakes, ice-contact gravel deposits grade into deltaic deposits. The gravel in these deltas is better sorted and less angular than the ice-contact gravel, and forms deeper, more continuous deposits. The deltas have gently sloping surfaces, but may have moderately to steeply sloping sides (MacMillan 1987).

Relatively minor amounts of organic material is mapped in wet, low-lying areas where the unconsolidated peat accumulation is greater than 40 cm thick (MacMillan 1987). The rapid growth and slow decay of fen type vegetation in these locations has resulted in the buildup of moderately peaty material.

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Soils March 2018

A total of 11 distinct AGRASID soil map units occur in the LAA (Table 3-1). Within each map unit there are up to 3 soil series, each with a defined proportion designated by a percentile. There are 12 soil series occurring within the AGRASID map units. Table 3-2 contains key information used to describe each soil series. The most common soil series mapped within the LAA is Fish Creek, followed by Dunvargan, Miscellaneous Gleysols and Miscellaneous Coarse – ZBL. The most common soil subgroup is a well-drained Orthic Black Chernozem. Textures vary from coarse to fine, depending on parent material.

Map Unit Label	Series 1	Percentile 1	Series 2	Percentile 2	Series 3	Percentile 3
DRSR1	DRW	5	SRC	5	-	0
DVFS1	DVG	5	FSH	5	-	0
DVFS1	DVG	5	FSH	5	-	0
DVG1	DVG	8	BVA	2	-	0
DVG4	DVG	6	ZERzbl	2	BVA	2
FSH1	FSH	8	FSHxt	2	-	0
FSH1	FSH	10	-	0	-	0
FSH2	FSH	8	ZGW	2	-	0
FSH6	FSH	8	DVG	2	-	0
POT6	POT	6	CRW	2	FSH	2
ZCOzbl8	ZCOzbl	6	ZUN	2	ZGW	2

Table 3-1 AGRASID Map Units in the LAA

Soils March 2018

Series Code	Series Name	Soil Order	Subgroup	Parent Material	PM Texture	Drainage
BVA	Beauvais	Chernozemic	O.DGC	Till	MF	Well
CRW	Carway	Chernozemic	O.BLC	Glaciofluvial	MC	Well
DRW	Drywood	Chernozemic	O.BLC	Glaciofluvial/Glaciofluvial	ME/VGVC	Well
DVG	Dunvargan	Chernozemic	O.BLC	Till	MF	Well
FSH	Fish Creek	Chernozemic	O.BLC	Glaciolacustrine	FI	Well
FSHxt	Fish Creek	Chernozemic	O.BLC	Glaciolacustrine/Till	FI/FI	Well
POT	Pothole Creek	Gleysolic	O.HG	Glaciolacustrine	FI	Poor
SRC	Sarcee	Chernozemic	O.BLC	Fluvial	ME	Well
ZCOzbl	Miscellaneous Coarse Soils - ZBL	Chernozemic	O.BLC	Undifferentiated	СО	Well
ZERzbl	Miscellaneous Eroded Soils - ZBL	Chernozemic	R.BLC	Undifferentiated	NA	Well
ZGW	Miscellaneous Gleysol	Gleysolic	O.HG	Undifferentiated	NA	Poor
ZUN	Miscellaneous Undifferentiated Mineral Soils	Regosolic	O.R	Undifferentiated	NA	Well

Table 3-2 AGRASID Key Characteristics of the Soil Series in the LAA

NOTES:

O.DGC - Orthic Dark Gray Chernozem; O.BLC - Orthic Black Chernozem; O.HG - Orthic Humic Gleysol; R.BLC - Rego Black Chernozem; O.R - Orthic Regosol

zbl – Black Soil Zone

MF - moderately fine; MC - moderately coarse; ME - medium; VGVC - very gravelly, very coarse; FI - fine; CO - coarse; NA - not applicable

Soils March 2018

3.1.2 Field Surveys

Detailed soil profile information was collected to meet requirements defined by *The Canadian Soil Information System (CanSIS) Manual for Describing Soils in the field* (Expert Committee on Soil Survey 1983).

The soil survey documented soil quality, quantity and the profiles of soils within the LAA (Section 5.4). Soil profiles were inspected to a depth of approximately 1.0 m below ground surface for mineral soils and 1-2.0 m below ground for organic soils, depending on the thickness of the organic layer. Soil inspection sites were selected based on a goal of achieving a Survey Intensity Level (SIL) 2 inspection density. Pre-mapping was done using LiDAR imagery and field inspection sites were selected to ground truth polygon boundaries. Adjustments to sites selected by image analysis were made in the field as necessary. GPS coordinates were recorded for each soil inspection location. Soil data were collected according to standards specified by the Canadian System of Soil Classification (SCWG 1998).

Landform information collected at each soil inspection site included:

- slope class, length and gradient
- aspect
- surface expression
- parent geological and surficial material
- site drainage
- depth to water table, where observed
- depth to seepage, where observed
- contrast between topsoil and subsoil
- land use

Information collected for each mineral soil horizon included:

- depth
- texture
- structure
- consistency
- color
- coarse fragment content
- presence of mottles and/or gleying
- presence of carbonates and/or salts

Information collected for each organic soil horizon included decomposition class of the organic horizon according to the Von Post Scale of Decomposition (SCWG 1998)

Soils March 2018

A total of 360 soil inspection sites were completed in the LAA between July 13 and September 28, 2016 (Table 3-3, Figure 3-1). The data collection equates to a SIL of 2 for the number of soil inspections, with one inspection site per 5.25 ha. An average of 41% of polygons in the LAA have at least one soil inspection site (not including disturbed site portions). The goal of having at least one soil inspection site in approximately 90% of the polygons was not met due to no enforced minimum polygon size (to characterize all wetlands in the LAA) as well as splitting polygons for reasons such as land use and slope class, which affects ratings for wind and water erosion and compaction and rutting but not, necessarily, the soil type. Of the 282 soil polygons without soil inspections, 196, or 69.5% are less than 1 ha in size.

Table 3-3 Soil Inspection Sites Completed in the LAA

ID	Number of Inspections	Number of Polygons ¹	Number of Polygons represented with at least one point (%) ²	Total Area (ha) ³	Survey Intensity Level (ha/number of inspections)
LAA	360	461	SIL 4 (40.5)	1,886.48	SIL 2 (1 inspection per 5.25 ha)
NOTES.					

¹Number of polygons includes disturbed site portions

² Number of polygons represented with at least one point does not include disturbed site portions

³ Total area includes disturbed site portions.

Soil series site data and soils horizon profile information for soil inspection sites are provided (see Section 5.4).

3.1.3 Laboratory analyses

Representative profiles were sampled from major soil series, by horizon, to characterize the physical and chemical characteristics of soil series in the LAA. A total of 49 soil samples from eighteen soil profiles representing eight major soil series were submitted for laboratory analysis. Samples were placed in laboratory supplied bags, labelled and delivered to accredited laboratory facilities. Analyses were performed using standard methods, as outlined by McKeague (1978) and Carter (2008).

Selected horizons were analyzed for one or more of the following soil properties:

- pH and electrical conductivity (saturated paste)
- soluble cations (calcium, magnesium, sodium and potassium) and anions (sulphate, chloride)
- saturation percentage and sodium adsorption ratio (SAR)

Soils March 2018

- cation exchange capacity and base saturation of upper horizons
- exchangeable calcium, magnesium, sodium, potassium
- calcium carbonate equivalent
- total organic carbon
- particle size analysis

Previously published sources of chemical data were used when analytical results were not available from samples collected. Analytical methods and quality assurance reports are provided in Section 5.4. Laboratory results are presented in Attachment C and discussed in the Results (Section 3.2).

3.1.4 Mapping

The RAA soil mapping was completed using desktop information only, and the LAA soil mapping was completed using field data collected in 2016.

3.1.4.1 Regional Assessment Area Soil Mapping

The majority of the RAA had previously been mapped by MacMillan (1987) as part of the soils survey of the Calgary urban perimeter at a scale of 1:50,000. This mapping covered approximately 62% of the RAA, specifically the north and east portions. AGRASID data were available for the remaining 38% of the RAA. The seams between the two data sets were clean, and the AGRASID data references the MacMillan report in describing soil map units for the area. RAA mapping is presented at a scale of 1:50,000.

3.1.4.2 Local Assessment Area Soil Mapping

Polygon boundaries were drawn using LiDAR and high definition imagery combined with interpretations of soil inspection site data acquired during the 2016 field program. The point data were used by interpreters to aid in classification of parent materials, vegetation patterns, and elevation data that all contribute to the final assessment and designation of soil attributes and soil series to map units.

In the closed legend mapping approach employed, each map unit assigned to a soil polygon corresponds to either a single dominant soil series or indicates co-dominance between two soil series (Mapping System Working Group 1981). If a single soil series is dominant, the three letter code for that series is used to represent the unit (Table 3-4). If two soil series share the dominance of the unit then the first two letters of each series code are combined. For example, Dunvargan soils as the single dominant series would be DVG, Fish Creek soils as the single dominant series would be FSH. A combination of Dunvargan and Fish Creek soils in the same polygon would be DVFS. The proportions of the one or two dominant soil series are assigned to the polygon and

Soils March 2018

whether individual or shared must comprise 50% or greater of the total map unit area. Although some units are assigned only one named series, most are compound units of between two to three soil series. The additional soil series present in these map units are represented numerically as significant soils. The number following the dominant or co-dominant map unit abbreviation further describes these compound units; these numbers are defined in Table 3-5. For example, a map unit including co-dominant Dunvargan and Fish Creek soils with significant inclusions of imperfectly drained soil would be labelled as DVFS2, where 2 represents significant imperfectly drained soils.

Soils were mapped at a scale of 1:50,000 and information on the map units and soil series are presented throughout the results section. At this scale of mapping, the minimum size of delineations is usually one hectare except for highly contrasting situations such as wetlands and water bodies. The soil maps present the following information:

- soil polygons displaying extent of each soil map unit and polygon slope classes
- topsoil, organic material, and subsoil thicknesses
- color coded maps to visually represent risk of wind and water erosion, compaction and rutting
- color coded maps to display agricultural land capability and reclamation suitability ratings

Any residences or roadways are mapped as disturbed.

Individual soil series are listed, along with their subgroup classification, parent material, texture and drainage. These soil series are defined more precisely in Section 5.4.

Soil survey sites were inspected by experienced soil scientists familiar with soils in the region to ensure the collection of accurate field data. Information collected at each soil survey site was reviewed by a senior soil scientist to confirm parent material, soil texture, landscape position, drainage, and soil classification were concordant. Draft soil map polygon delineation and attribution were reviewed by a senior soil scientist.

Soils March 2018

Soil Series	3 letter Code	Subgroups	Textural Group	Parent Material
Dunvargan	DVG, DVGca	Orthic Black Chernozem, Calcareous Black Chernozem	Fine	Till
Fish Creek	FSH, FSHca, FSHgl	Orthic Black Chernozem, Calcareous Black Chernozem, Gleyed Black Chernozem	Fine to Very Fine	Glaciolacustrine
Mesa Butte	MSB	Rego Black Chernozem	Moderately Coarse	Residuum
Pothole Creek	POT	Orthic Humic Gleysol	Fine to Very Fine	Glaciolacustrine or Till
Sarcee	SRCca, SRCxg	Calcareous Black Chernozem	Very Coarse	Fluvial or Glaciofluvial
Twin Bridges	TBR, TBRgl, TBRgr	Orthic Regosol	Moderately Coarse to Very Coarse	Fluvial or Glaciofluvial
Gleysol - Coarse	ZGC	Orthic Humic Gleysol, Rego Humic Gleysol	Moderately Coarse to Very Coarse	Organic over Fluvial

Table 3-4Soil Series in the LAA

Table 3-5Soil Map Unit Numbers and Description

Map Unit Numerical Modifiers	Soil Map Unit Description
1	pure unit
2	significant imperfectly-drained soils
4	significant gravel inclusions
6	significant till or glaciolacustrine erosional remnants
7	significant inclusions of variably textured fluvial

3.1.5 Data Analyses

Data collected during the field program are used to refine:

- estimates of topographic diversity and topsoil and subsoil thickness
- wind and water erosion risk ratings
- compaction and rutting risk ratings
- agricultural land capability ratings
- reclamation suitability ratings

Soils March 2018

3.1.5.1 Topography

Slope classes (Table 3-6) were assigned to each soil map unit for assigning agricultural capability and predicting the potential for water erosion and rutting. Slope classes are assigned based on the class limits used in the Canadian System of Soil Classification (SCWG 1998).

Table 3-6	Slope Classes

Slope Class	Percent Slope
1	0-0.5
2	>0.5-2
3	>2-5
4	>5-9
5	>9-15
6	>15-30
7	>30-45
8	>45-70
9	>70-100

3.1.5.2 Topsoil and Subsoil Thickness

Topsoil and subsoil thickness were measured for each surveyed soil site to establish a range of thickness for each soil map unit. Topsoil and subsoil were defined as follows:

- topsoil includes all organic horizons (LFH, Om, Oh, Of) and mineral topsoil horizons (e.g., Ah, Ap, Ae).
- Subsoil includes all mineral B horizons (e.g., Bm, Bt, Bnt) and transitional zones between the A and B, or A and C horizons (e.g., AB or AC horizons).

Data collected from all 360 soil inspection points contributed to the calculation of topsoil and subsoil thicknesses for each soil map unit. Topsoil and subsoil values from soil survey locations were used to spatially interpolate raster surfaces representing topsoil and subsoil depths.

Statistics were then run on the rasters and applied to the soil mapping. The average raster value within each polygon was retrained as an approximate value of topsoil and subsoil depth.

Soils March 2018

3.1.5.3 Wind Erosion

Wind erosion risk classes were determined for each soil series using the methods of Coote and Pettapiece (1989). The following formulas were evaluated to calculate the risk of wind erosion:

 $V_2 = 0.777 V_h / (0.233 + 0.656 \log(H + 4.75))$

Where:

 V_2 = wind velocity at 2 m above the ground (km/hr)

V_h – wind velocity at anemometer height (km/hr)

H = height of anemometer above the ground (m)

 $V_* = (27.78 V_2) / (5.75 \log (2 / k))$

Where:

 V_* = drag velocity of wind at the soil surface (cm/s)

 V_2 = wind velocity (km/hr) at 2 m above the ground

k = height at which velocity is effectively zero (assumed to be 0.00025 m)

$$E = KC (V^2 - \gamma W^2)^{1.5}$$

Where:

E = maximum instantaneous soil movement by wind (dimensionless)

K = surface roughness and aggregation factor (dimensionless)

C = factor representing soil resistance to movement by wind (dimensionless)

V* = drag velocity of wind at the soil surface (cm/s)

 γ = soil moisture shear resistance (dimensionless)

W = available moisture of the surface soil (m³ water m⁻³ soil)

Soils March 2018

Wind speed data to calculate the V* factor, specifically V_h , were obtained from Environment Canada (Environment Canada 2014). Available surface moisture was estimated for each soil texture class based on data collected from the field survey. Remaining variables were either calculated by using the above formulas or by using constants provided by Coote and Pettapiece (1989).

The rating system is based on a land surface that is bare and unprotected (no vegetation or litter cover) with a non-crusted surface. The classification of wind erosion risk consists of five classes based on E, the value of the maximum instantaneous soil movement by wind (see Table 3-7). The wind erosion risk was estimated for each soil map unit by using the area-weighted E value for each soil series that made up each soil unit.

Table 3-7Value of the Maximum Instantaneous Soil Movement by Wind and
Associated Wind Erosion Rating

Wind Erosion Rating	E -Value of the Maximum Instantaneous Soil Movement by Wind			
Negligible	<100			
Low	100-249.9			
Moderate	250-399.9			
High	400-699.9			
Severe	>700			
SOURCE: Coote and Pettapiece (1989)				

3.1.5.4 Water Erosion

A representative water erosion risk class was determined for each soil series using the revised universal soil loss equation for application in Canada (RUSLEFAC) method (Wall et al. 2002). The RUSLEFAC was developed to predict average soil loss by water erosion by considering rainfall, soil and landscape characteristics and management practices. The revised universal soil loss equation is:

$$A = R * K * LS * C * P$$

The following water erosion risk factors are considered in this method:

A = Potential, long-term average annual soil loss (tonnes ha-1 yr-1)

R = Rainfall and Runoff Factor - a measure of the total annual erosive rainfall for a specific location, and the distribution of erosive rainfall throughout the year (MJ mm $ha^{-1}h^{-1}$)

K = Erodibility Factor - a quantitative measure of the soil's inherent susceptibility to erosion and the soil's influence on runoff amount and rate (t h $MJ^{-1} mm^{-1}$)

Soils March 2018

LS = Topographic Factor - accounts for the slope angle and length on erosion (dimensionless)

C = Crop / Vegetation and Management Factor - used to determine the effectiveness of soil and crop management systems in terms of preventing or reducing erosion (dimensionless)

P = Support Practice Factor - accounts for the erosion control effectiveness of support practices, and supports the C factor (dimensionless)

R factors were derived from the isoerodent map for Western Canada

K factors are provided in the RUSLEFAC manual based on a combination of soil texture and organic matter content.

LS is determined based on the slope steepness, slope length, and the type of site. Slope steepness and slope length were both determined based on field data and mapping. Table LS-3 was used to derive the LS factor from the RUSLEFAC manual for each soil polygon, as it is intended for highly disturbed sites such as freshly prepared construction sites.

C and P factors were only applied for map units where land use indicated that the ground surface was being actively managed (crop, hayland, pasture).

The RUSLEFAC system has five classes of water erosion risk. For the classes, categories and associated potential soil losses see Table 3-8. The water erosion risk for each soil map unit was determined by using the area-weighted average of potential soil loss (A) of each soil series to determine the risk rating for each soil map unit.

Water Erosion Class	Category	Potential Loss (t/ha/y)	
1	Very Low	<6	
2	Low	6 to 11	
3	Moderate	11 to 22	
4	High	22 to 33	
5	Severe	> 33	
SOURCE: Wall et al. (2002)			

Table 3-8 Water Erosion Class

Soils March 2018

3.1.5.5 Compaction

A generalized rating system for compaction risk was developed using professional judgment and review of two compaction systems that had been designed for forestry applications; specifically, the soil compaction and puddling hazard key (British Columbia Ministry of Forests 1999) and the table of compaction and rutting hazard for soils in Ontario (Archibald et al. 1997). The generalized rating system developed for compaction risk (see Table 3-9) takes into consideration texture and drainage regime.

Susceptibility to soil compaction is dependent on soil physical properties, the moisture content during the disturbance and the nature of the applied force (Cannon and Landsburg 1990). Generally, compatibility increases with higher clay content, higher soil moisture content and lower organic matter content (Cannon and Landsburg 1990).

Compaction risk ratings are based on results from laboratory texture analysis and drainage is based on field observation. Using these two criteria, each soil series was assigned a compaction risk rating.

Average compaction ratings for map units cannot be calculated because the variables used to estimate compaction are not numeric. Compaction ratings can be assigned to each soil series comprising a map unit and these ratings can be aggregated and represented as complexes, resulting in one or more compaction ratings proportional to the occurrence of a given soil series within a map unit.

	Textural Class							
Drainage	Very Coarse (S, LS, LFS)	Moderately Coarse (SL, FSL)	Medium (VFSL, L, Sill)	Moderately Fine (SCL, CL, Sic, Si)	Fine/Very Fine (SC, Sic, C, HC)	Organic		
Rapid	Low	Low	-	-	-			
Well	Low	Low	Low	Moderate	Moderate			
Imperfect	Low	Low	Moderate	High	High			
Poor	Moderate	Moderate	High	High	High			
Very Poor		•				High		
NOTES:								
S cond IS	loomy cond I	ES loomy find	and Cl con	duloamy ESL - fino a	andy loam VESL -	vory fino		

Table 3-9 Compaction Risk Matrix

S=sand, LS = loamy sand, LFS = loamy fine sand, SL = sandy loamy, FSL = fine sandy loam, VFSL = very fine sandy loam, L = loam, Sill = silt loam, SCL = sandy clay loam, CL = clay loam, Sic = silty clay loam, Si = silt, SC = sandy clay, Sic = silty clay, C = clay, HC = heavy clay

Soils March 2018

3.1.5.6 Rutting

Several factors affect a soil's susceptibility to rutting, including moisture content at the time of the load, soil texture and landscape position (Alberta Forest Products Association/Land and Forest Service (AFPA/LFS) 1996). According to AFPA/LFS (1996), the most important factor is soil moisture content because dry soils, regardless of texture, will retain their strength. However, as a soil's moisture content increases, so does its susceptibility to rutting. Once saturation is reached, a soil is more prone to rutting than compaction because all the pore space is filled with water. Finer-textured soils, such as clays and silts, are more plastic than coarser-textured soils and are at a greater risk of rutting. The soil's landscape position will play a role in its moisture content by influencing drainage and runoff. Soil texture, water content and landscape position are taken into consideration to estimate the risk of rutting (see Table 3-10).

Rutting risk ratings are based on results from laboratory texture analysis, soil classification and a representative slope class for the soil series. As with compaction, an average rutting rating cannot be calculated for each map unit. Instead, a percentage of each area of the map unit is given its own rating based on the soil series within it. Each map unit can have a combination of low, moderate and high compaction ratings each of which can cover between 0% and 100% of the map unit area.

Factor	Characteristic	Rating
Soil	Sand, Loamy Sand, Sandy Loam	1
	All other textures	2
	Organic	3
Soil Water Content	Bruni sols, Podzols, coarse-textured Retools	1
	Chernozems, Lucidols, loamy to fine-textured Retools	2
	Glycols, Organic	3
Landscape	Slope classes 3-5	1
	Slope classes 2-3	1.5
	Slope classes 1-2	2
	Slope class ±6	3
Final Rating (multiplyir	ng Soil, Water Content and Landscape ratings together)	
Low		1–4
Moderate		5–11
High		12–27
SOURCE: Modified from	m AFPA/LFS (1996)	

Table 3-10 Rating System for Rutting Risk

Soils March 2018

3.1.5.7 Agricultural Land Capability

Agricultural land capability indices were determined for each identified soil map unit according to the Land Suitability Rating System for Agricultural Crops (Agriculture and Agri-Food Canada 1995). Land capability classes in the LAA were determined using chemical and physical parameters that are representative of the soil map units. Each soil series is assigned an agricultural land capability class based on data collected during the field program using the representative profiles listed in Table 3-11. Locations of these sampling sites are illustrated on Figure 3-1.

The map units are rated by assigning an agricultural land capability rating according to the proportion of each unit within a given soil series. Up to three agricultural land capability classes are assigned to soil map units.

The seven agricultural land capability classes and subclasses are described in Tables 3-12 and 3-13, respectively.

Soil Series (Series and Phase Name)	Soil Series Code and Phase Modifier	2016 Site Sampling IDs of Representative Profiles
Denarian	DVG	SRBL16019
Calcareous Denarian	Dogcart	SRKF16080
Fish Creek	FSH	SRWC16022
Calcareous Fish Creek	Fishcam	SRWC16080
Gleied Fish Creek	Shel	SRKF16002
Mesa Butte	MSB	SRKF16097
Pothole Creek	POT	SRWC16097
Calcareous Sarcee	Sircar	SRBL16003
Gravelly Sarcee	Sircar	SRWC16003
Twin Bridges	TBR	SRKF16140
Gleied Twin Bridges	Trig	SRBL16027
Twin Bridges over gravel	Trig	SRWC16007
Gleisoil – Coarse	ZGC	SRKF16098
Reclaimed	ZREC	SRWC16020

Table 3-11 Soil Series and Sampling Site IDs in the LAA

Soils March 2018

Land Class	Index Points	Land Capability
1	80-100	Land has no significant limitations for production of the specified crops.
2	60-79	Land has slight limitations that may restrict the growth of the specified crops or require modified management practices.
3	45-59	Land has moderate limitations that restrict the growth of the specified crops or require special management practices
4	30-44	Land has severe limitations that restrict the growth of the specified crops or require special management practices or both. This class is marginal for sustained production of the specified crops.
5	20-29	Land has very severe limitations for sustained production of the specified crops. Annual cultivation using common cropping practices is not recommended.
6	10-19	Land has extremely severe limitations for sustained production of the specified crops. Annual cultivation is not recommended even on an occasional basis.
7	0-9	Land is not suitable to produce the specified crops.
SOURCE: Ag	griculture and Agri-	Food Canada 1995

Table 3-12 Land Capability Classes for Agricultural Production

Table 3-13 Land Capability Subclasses for Agricultural Production

Category	Subclasses
Climate(C)	Temperature(H); Moisture(A)
Soils(S)	Water Holding Capacity and Texture(M); Soil Structure(D); Organic Matter(F); Depth of Topsoil(E); Soil Reaction(V); Salinity(N); Sodality(Y); Organic Surface(O); Drainage(W); Organic Soil Temperature(Z); Rock(R); Degree of Decomposition or Fiber Content(B); Depth and Substrate(G)
Landscape(L)	Slope(T); Landscape Pattern(K); Stoniness and Coarse Fragments(P)

3.1.5.8 Reclamation Suitability

Reclamation suitability ratings were determined for the first (topsoil) and second lifts (upper subsoil) only of each undisturbed mineral soil map unit using *Soil Quality Criteria Relative to Disturbance and Reclamation* (AAFRD 1987) and the associated physical and chemical data for profiles representative of the series (Table 3-11). Because these criteria were designed for mineral soils, suitability ratings for organic soils were not developed. Suitability ratings range from unsuitable to good (see Table 3-14). The first lift (topsoil) was rated based on the characteristics of the uppermost (A) mineral horizon(s) and the second lift (upper subsoil) was rated based on the first subsoil horizon(s) occurring below the A horizon(s). The second lift is usually comprised of

Soils March 2018

B horizon(s) for Orphic profiles and C horizon(s) for Regiolect profiles. Transitional horizons (AB and AC) were rated as subsoil.

For soils with a thick peaty or organic horizon above a mineral horizon, the mineral horizon is used to rate both the first and second lift. Reclamation suitability for lower subsoil is not provided because reclamation planning only involved two lifts. The map unit ratings are based on the soil series ratings in the assigned proportions. The resulting map units have a range of reclamation suit abilities that are proportional to the amount of each series in that map unit.

Reclamation Suitability Class	Limitations
Good	None to slight soil limitations that affect use for plant growth
Fair	Moderate soil limitations that affect use but can be overcome by proper planning and good management
Poor	Severe soil limitations that make use questionable; careful planning and very good management are required
Unsuitable	Chemical or physical soil properties are so severe that reclamation is not possible of economically feasible
SOURCE: AAFRD 1987	

Table 3-14 Reclamation Suitability Classification

3.1.6 Quality Control (QC)

The purpose of the QC program was to assess the reliability of the data provided for the assessment. Samples were collected in laboratory supplied bags following sampling procedures. Samples were labeled and control was maintained through use of chain of custody forms. Samples collected were submitted to a laboratory accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). Duplicate soil samples were collected in the field for internal QC checks of the laboratory analysis. Laboratory duplicate results were supplied from Maxxam Analytics.

All soil profile and landform information collected at each soil inspection site and the soil series name assigned were reviewed and approved by a senior soil scientist. All polygon lines and soil map unit names assigned on the soil maps were also reviewed by a senior soil scientist.

Soils March 2018

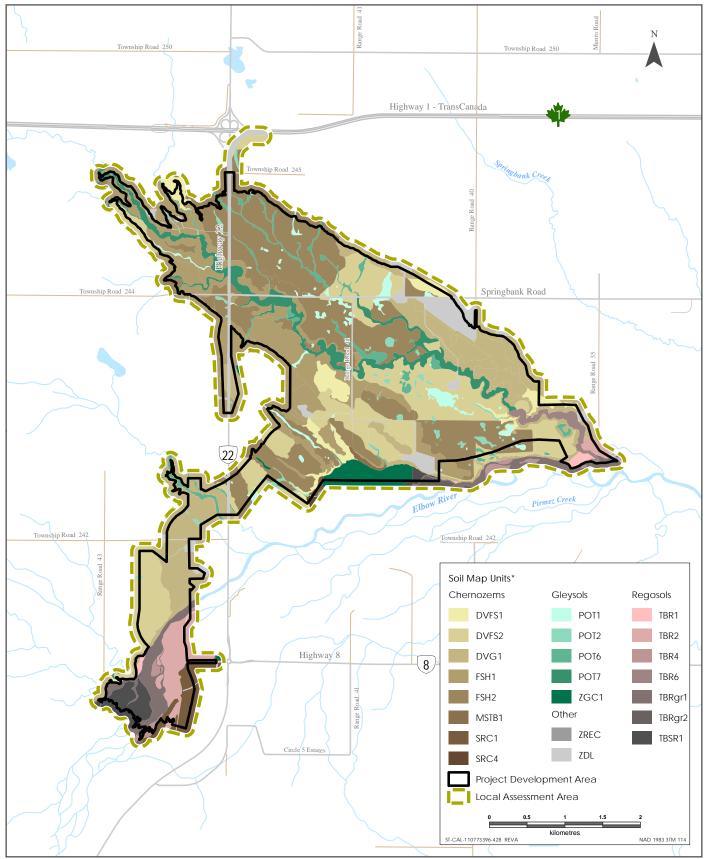
3.2 SOILS RESULTS

3.2.1 Soil Map Units in the LAA

Data collected during the 2016 field study program identified 86 soil series or series phases (soil taxa). These soil taxa form the basis for assigning attributes to mapped soil units in the LAA. These taxa were combined, based on their proportional occurrence within map units as determined by interpretation of imagery and plot information. As a result, 21 aggregate soil map units are used to best represent the soil landscapes of the LAA. To account for topographic variation within soil map units, each unit has one or more slope phases. When combined with the map units representing soil landscapes, a total of 54 map units are used to label map units. In addition to soil map units, ZDL was assigned to disturbed portions of the LAA including roadways and residences. The delineation of disturbed areas was completed by interpretation of air photo imagery.

For completed soil inspection sites on the LAA, see Figure 3-1. For soil map units in the LAA, see Figure 3-2. For a summary of the dominant soil orders and surficial geology, see Tables 3-15 and 3-16, respectively. For the area of individual map units, see Table 3-17.

3.2.2 Dominant Soil Orders in the LAA


Soil map units were assigned a dominant soil order (e.g., Chernozemic, Gleysolic) based on the soil dominant soil series. This dominant or co-dominant soil series is always the highest proportioned soil within a soil map unit and can be used to best represent conditions within a map unit. For map presentation, the soil map units have been organized by dominant or best representative soil order.

The dominant soil orders in the LAA are as follows:

- Chernozemic soils comprise 74 percent of the LAA.
- Gleysolic soils comprise 11percent of the LAA.
- Regosolic soils comprise 10 percent of the LAA.
- disturbed and reclaimed soils (other) comprise 5 percent of the LAA.

The dominant soil orders of the LAA are summarized in Table 3-15 and on Figure 3-2.

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Soil Map Units in the LAA

Soils March 2018

Soil Order	Map Units (Dominant Order)	Area of LAA (ha)	% in LAA					
Chernozem	DVFS1, DVFS2, DVG1, FSH1, FSH2, SRC1, SRC4, MSTB1	1,395.7	74.0					
Gleysol	POT1, POT2, POT6, POT7, ZGC1	210.3	11.2					
Regosol	TBR1, TBR2, TBR4, TBR6, TBSR1, TBRgr1, TBRgr2	182.3	9.7					
Other	ZDL, ZREC	98.2	5.2					
Total		1,886.5	100.0					
NOTES:								
Areas and prop	Areas and proportions might not add up to totals because of rounding							

Table 3-15Soil Orders in the LAA

3.2.3 Surficial Geology and Geomorphology Characteristics in the LAA

Surficial geology and geomorphology trends in the LAA are as follows:

- Fine to very fine-textured till and glaciolacustrine deposits are the most extensive, covering 1,448 ha, or 77% of the LAA (Table 3-16). Soil map units included in this category include DVG (Dunvargan) 1, FSH (Fish Creek) 1, FSH2, POT (Pothole Creek) 1, POT2, POT6, DVFS (Dunvargan-Fish Creek) 1 and DVFS2 (Table 3-16).
- Moderately coarse to very coarse-textured fluvial and glaciofluvial deposits are also extensive, covering 172 ha, or 9.1%, of the LAA (Table 3-16). Soil map units included in this category include TBR (Twin Bridge) 1, TBRgr (Twin Bridges Gravelly) 1, TBRgr2 and ZGC (Gleysol, coarse textured) 1 (Table 3-16).
- Medium-textured fluvial deposits occupy 38 ha, or 2%, of the LAA (Table 3-16). The SRC (Sarcee) 1 and SRC4 soil map units best represents these soils.
- Undifferentiated units or transitional area soil map units occupy 130 ha, or 7%, of the LAA (Table 3-16). These units can be further broken down into:
 - Fine to very fine-textured till and glaciolacustrine with variably textured fluvial parent materials being represented by POT7, which occupies 82 ha, or 4%, of the LAA.
 - Moderately coarse to very coarse-textured, sometimes gravelly fluvial and mediumtextured fluvial parent materials, being represented by TBSR (Twin Bridges-Sarcee) 1, which occupies 30 ha, or 2%, of the LAA.
 - Moderately coarse to very coarse-textured fluvial parent materials, and fine to very finetextured till and glaciolacustrine erosional remnants being represented by TBR6, which occupies 15 ha (less than 1%) of the LAA.

Soils March 2018

- Colluvium overlying residuum (sandstone and shale) and moderately coarse to very coarse-textured parent materials, being represented by MSTB (Mesa Butte-Twin Bridges)
 1, which occupies 3 ha (less than 1%) of the LAA.
- Other units, including the reclaimed soil map unit (ZREC) and disturbed soil map unit (ZDL) occupy 98 ha, or 5%, of the LAA (Table 3-16).

For detailed composition of each soil map unit see Table 3-17. For the dominant surficial geology see Figure 3-3. For individual series description, see the map unit description tables in Attachment C.

Dominant Surficial Material	Area of LAA (ha)	% in LAA
Units with fine to very fine-textured till and glaciolacustrine parent materials	1448.4	76.8
Units with medium-textured fluvial parent materials	38.1	2.0
Units with moderately coarse to very coarse-textured fluvial and glaciofluvial parent materials	172.1	9.1
Undifferentiated units, transitional areas	129.7	6.9
Other units	98.2	5.2
Totals	1,886.5	100.0
NOTES: Areas and proportions might not add up to totals because of rounding		

Table 3-16 Dominant Surficial Materials

Soils March 2018

Table 3-17 LAA Soil Map Unit Legend – Part One

Unit	Dominant Series One	Code	Percent	Dominant Series Two	Code	Percent	Significant Series One	Code	Percent	Significant Series Two	Code	Percent	Slope Class	Area of LAA (ha)	Percent of LAA					
Units with fine to ve	ry fine-textured till and glacic	lacustrine parer	nt materials	I	I	-					1		1	1448.4	76.8					
DVFS1	Dunvargan	DVG	50	Fish Creek	FSH	50	-	-	-	-	-	-	3	32.2	1.7					
													4	1.0	0.1					
													5	17.4	0.9					
																		5-6	3.5	0.2
													6	1.1	0.1					
DVFS2	Dunvargan	DVG	50	-	-	-	Fish Creek,	FSHca	30	Fish Creek, gleyed	FSHgl	20	2	98.3	5.2					
							calcareous						3	116.3	6.2					
													4	89.7	4.8					
DVG1	Dunvargan	DVG	70	-	-	-	Dunvargan,	DVGca	30	-	-	-	1-3	1.5	0.1					
							calcareous							2	10.0	0.5				
													3	154.8	8.2					
													4	49.3	2.6					
													5	21.1	1.1					
													6	11.6	0.6					
												6-7	9.3	0.5						
												6-8	2.6	0.1						
													7	3.5	0.2					
													7-8	14.1	0.7					
50114			70					5011					8	3.6	0.2					
FSH1	Fish Creek	FSH	70	-	-	-	Fish Creek, calcareous	FSHca	30	-	-	-	3	120.7	6.4					
													4	124.1	6.6					
	Fish Creek	- CU	(0				Fish Croak	<u>ECHee</u>	20	Fish Croak aloved		20	5	31.9	1.7					
FSH2	FISH Creek	FSH	60	-	-	-	Fish Creek, calcareous	FSHca	20	Fish Creek, gleyed	FSHgl	20	1	2.7 309.2	0.1					
													3	124.4	6.6					
													4	0.9	<0.1					
POT1	Pothole Creek	POT	100			_	_	-					4	6.6	<0.1 0.4					
						_			_			_	2	20.1	1.1					
													3	3.3	0.2					
POT2	Pothole Creek	POT	80	-	_		Fish Creek, gleyed	FSHgl	20	-	-	_	1	0.9	<0.1					
							sin ereek, gioyou						2	19.6	1.0					



Soils March 2018

Table 3-17 LAA Soil Map Unit Legend – Part One

Unit	Dominant Series One	Code	Percent	Dominant Series Two	Code	Percent	Significant Series One	Code	Percent	Significant Series Two	
POT6	Pothole Creek	POT	50	-	-	-	Fish Creek, gleyed	FSHgl	30	Fish Creek	F
Units with medium-te	xtured fluvial parent materials										
SRC1	Sarcee, calcareous	SRCca	100	-	-	-	-	-	-	-	-
SRC4	Sarcee, calcareous	SRCca	80	-	-	-	Sarcee, calcareous over gravel	SRCcaxg	20	-	-
Units with moderately	coarse to very coarse-texture	ed fluvial and	glaciofluvi	al parent materials							
TBR1	Twin Bridges	TBR	100	-	-	-	-	-	-	-	-
TBR2	Twin Bridges	TBR	80	-	-	-	Twin Bridges, gleyed	TBRgl	20	-	-
TBR4	Twin Bridges	TBR	80	-	-	-	Twin Bridges, gravelly	TBRgr	20	-	-
TBRgr1	Twin Bridges, gravelly	TBRgr	100	-	-	-	-	-	-	-	-
TBRgr2	Twin Bridges, gravelly	TBRgr	80	-	-	-	Gleysols, coarse textured	ZGC	20	-	-
ZGC1	Gleysols, coarse textured	ZGC	100	-	-	-	-	-	-	-	-
Undifferentiated units	, transitional areas									•	
POT7	Pothole Creek	POT	60	-	-	-	Gleysols, coarse textured	ZGC	20	Twin Bridges, gleyed	Т
TBR6	Twin Bridges	TBR	80	-	-	-	Dunvargan	DVG	20	-	-
TBSR1	Twin Bridges	TBR	50	Sarcee, calcareous	SRCca	50	-	-	-	-	-
MSTB1	Mesa Butte	MSB	50	Twin Bridges	TBR	50	-	-	-	-	-
Other Units							1			L	I
Disturbed	Disturbed	ZDL	100	-	-	-	-	-	-	-	-
Reclaimed	Reclaimed	ZREC	100	-	-	-	-	-	-	-	-
Total				•			•		•	•	
NOTES: Areas and proportion	ns might not add up to totals b	ecause of ro	unding								

Areas and proportions might not add up to totals because of rounding

Soils March 2018

LAA Soil Map Unit Legend - Part Two Table 3-17

Unit	Textural Classes	Genetic Materials	Drainage Regimes	Soil Cl
Units with fine	to very fine-textured till and glaciolacustrine parent materials			
DVFS1	Fine to very fine-textured	Till and Glaciolacustrine	Moderately well to well	Orthic
DVFS2	Fine to very fine-textured	Till and Glaciolacustrine	Imperfect to well	Orthic Gleye
DVG1	Fine to very fine-textured	Developed on moderately to strongly calcareous, mixed Continental and Cordilleran Till	Moderately well to well	Orthic
FSH1	Fine to very fine-textured	Developed on non-saline, moderately calcareous Glaciolacustrine	Moderately well	Orthic
FSH2	Fine to very fine-textured	Glaciolacustrine	Imperfect to moderately well	Orthic Gleye
POT1	Fine to very fine-textured	Till and Glaciolacustrine	Poor	Orthic
POT2	Fine to very fine-textured	Till and Glaciolacustrine	Poor to imperfect	Orthic
POT6	Fine to very fine-textured	Till and Glaciolacustrine	Poor to moderately well	Orthic Black
Units with med	ium-textured fluvial parent materials			
SRC1	Medium-textured	Fluvial	Well	Calca
SRC4	Medium-textured, sometimes gravelly	Fluvial	Well to rapid	Calca
Units with mod	erately coarse to very coarse-textured fluvial and glaciofluvial parent m	aterials		-
TBR1	Moderately coarse to very coarse-textured	Fluvial and Glaciofluvial	Rapid	Orthic
TBR2	Moderately coarse to very coarse-textured	Fluvial and Glaciofluvial	Imperfect to rapid	Orthic
TBR4	Moderately coarse to very coarse-textured, sometimes gravely	Fluvial and Glaciofluvial	Rapid	Orthic
TBRgr1	Gravelly moderately coarse to very coarse-textured	Fluvial, active channel deposits	Rapid	Grave
TBRgr2	Gravelly moderately coarse to very coarse-textured	Fluvial, active channel deposits	Poor to rapid	Grave
ZGC1	Coarse-textured	Fluvial	Poor	Humic
Undifferentiate	d units, transitional areas			
POT7	Fine to very fine-textured, sometimes fine to coarse-textured	Till and Glaciolacustrine with variably textured fluvial parent materials	Poor to imperfect	Orthic
TBR6	Moderately coarse to very coarse-textured, sometimes fine to very fine-textured	Fluvial, with inclusions of Till and Glaciolacustrine erosional remnants	Well to rapid	Orthic
TBSR1	Medium to very coarse-textured, sometimes gravelly	Fluvial	Well to rapid	Orthic
MSTB1	Fine to very coarse-textured	Colluvium overlying Residuum (sandstone and shale)	Well to rapid	Rego I
Other				-
ZDL	N/A	N/A	N/A	N/A
ZREC	Fine to very fine-textured	Anthropogenically disturbed soils over Till or Glaciolacustrine	Moderately well	N/A

Classes

thic Black Chernozem, Calcareous Black Chernozem

thic Black Chernozem, Calcareous Black Chernozem, eyed Black Chernozem

thic Black Chernozem, Calcareous Black Chernozem

thic Black Chernozem, Calcareous Black Chernozem

thic Black Chernozem, Calcareous Black Chernozem, eyed Black Chernozem

thic Humic Gleysol

thic Humic Gleysol, Gleyed Black Chernozem

thic Humic Gleysol, Gleyed Black Chernozem, Orthic ack Chernozem

alcareous Black Chernozem

alcareous Black Chernozem, Gravelly Calcareous Black

thic Regosol

thic Regosol, Gleyed Regosol

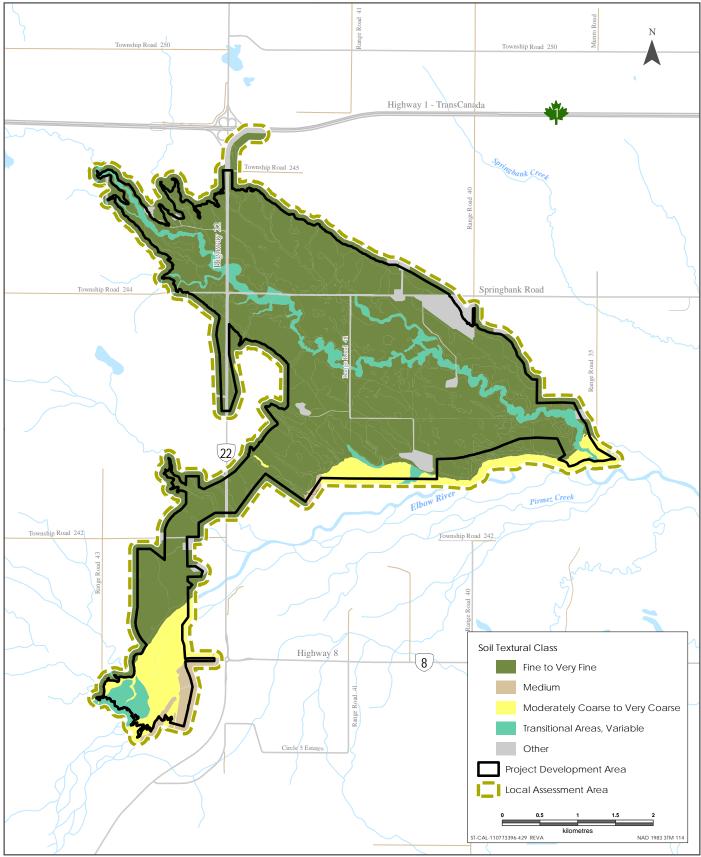
thic Regosol, Gravelly Regosol

avelly Regosol

avelly Gleyed Regosol, Humic Gleysol

mic Gleysols

thic Humic Gleysol, Gleyed Regosol


thic Regosol, Black Chernozem

thic Regosol, Calcareous Black Chernozem

go Black Chernozem, Orthic Regosol

Soils March 2018

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Soil Textural Classes in the LAA

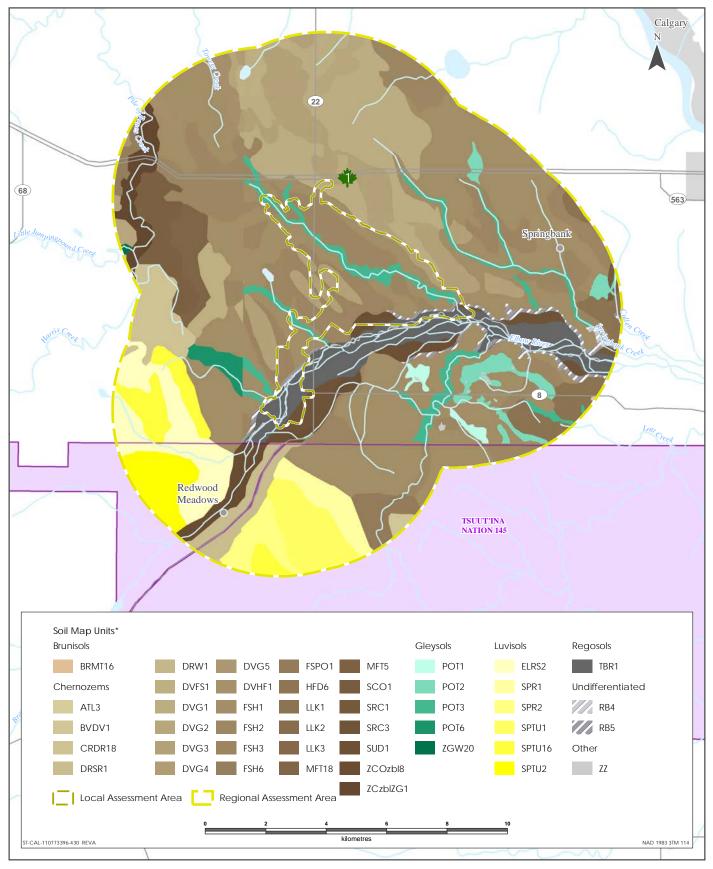
Soils March 2018

3.2.3.1 RAA

Data collected during the desktop assessment of the RAA identified 44 aggregate soil map units. Topographic variation was not considered for this assessment. In addition to soil map units, ZZ was assigned to open water portions of the RAA, only for the AGRASID mapped portion.

For soil map units in the RAA, see Figure 3-4. For a summary of the dominant soil orders and surficial geology, see Table 3-18 and Table 3-19, respectively. For the area of individual map units, see Table 3-20.

3.2.4 Dominant Soil Orders in the RAA


Soil map units were assigned a dominant soil order (e.g., Chernozemic, Gleysolic), based on the soil dominant soil series. This dominant or co-dominant soil series is always the highest proportioned soil within a soil map unit and can be used to best represent conditions within a map unit. For map presentation, the soil map units are organized by dominant or best representative soil order.

The dominant soil orders in the RAA are as follows:

- Chernozemic soils comprise 76% of the RAA.
- Luvisolic soils comprise 12% of the RAA.
- Gleysolic soils comprise 6% of the RAA.
- Regosolic soils comprise 5% of the RAA.
- undifferentiated soils comprise 1% of the RAA.
- open water (other) comprise less than 1% of the RAA.

The dominant soil orders of the RAA are summarized in Table 3-18 and on Figure 3-4.

Sources: Base Data - ESRI, Natural Earth, Government of Alberta, Government of Canada Thematic Data - ERBC, Government of Alberta, Stantec Ltd

Soil Map Units in the RAA

Soils March 2018

Soil Order	Map Units (Dominant Order)	Area of RAA (ha)	% of RAA				
Brunisol	BRMT16	2.1	<0.1				
Chernozem	ATL3, BVDV1, CRDR18, DRSR1, DRW1, DVFS1, DVG1, DVG2, DVG3, DVG4, DVG5, DVHF1, FSH1, FSH2, FSH3, FSH6, FSPO1, HFD6, LLK1, LLK2, LLK3, MFT5, MFT18, SCO1, SRC1, SRC3, SUD1, ZCOzbl8, ZCzblZG1	17,126.0	76.0				
Gleysol	POT1, POT2, POT3, POT6, ZGW20	1274.1	5.7				
Luvisol	ELRS2, SPR1, SPR2, SPTU1, SPTU2, SPTU16	2778.1	12.3				
Regosol	TBR1	1033.7	4.6				
Undifferentiated	RB4, RB5	250.7	1.1				
Other	ZZ	75.4	0.3				
Total		22,540.2	100.0				
NOTES: Areas and proportions might not add up to totals because of rounding							

Table 3-18 Soil Orders in the RAA

3.2.5 Surficial Geology and Geomorphology Characteristics in the RAA

Surficial geology and geomorphology trends in the RAA are as follows:

- Fine to very fine-textured parent materials cover 11,720 ha, or 5 %, of the RAA. Soil map units included under this description are predominantly till and glaciolacustrine deposits of the ATL (Antler) 3, FSH (Fish Creek) 1, FSH2, FSH3, LLK (Lloyd Lake) 1, LLK2, LLK3, POT (Pothole Creek) 1, POT2, RB (Rough Broken) 4, RB5, ELRS(Elbow/Robinson) 2, and FSPO (Fish Creek/Pothole Creek) 1 soil map units (Table 3-19).
- Moderately fine to very fine parent materials are mapped over 18% of the RAA. These soil
 map units are predominantly till deposits of the DVG (Dunvargan) soil map unit and include
 the following variations: DVFS (Dunvargan-Fish Creek) 1, DVG1, DVG2, DVG3, DVG4 and
 DVG5 (Table 3-19). AGRASID describes Dunvargan till as being predominantly moderately
 fine to fine textured, while the MacMillan report describes it as being fine to very fine
 textured. Field data collected in 2016 identified the till in the RAA as being fine to very fine
 textured (Table 3-16).
- Units with moderately fine to fine-textured parent materials cover 687 ha, or 3%, of the RAA and included the soil map units MFT (Maycroft) 18 and MFT5, which were formed on glaciolacustrine deposits (Table 3-19).

Soils March 2018

- Units with moderately fine-textured parent materials in the RAA were mainly formed on gravelly or cobbly till, and comprise approximately 9% of the area. The soil map units grouped under this texture class are BVDV (Beauvais/Dunvargan) 1, SPR (Spruce Ridge) 1, SPR2 and SPTU (Spruce Ridge/Tough Creek) 1, 2 and 16 (Table 3-19).
- Medium to coarse textured parent materials in the RAA are typically describing fluvial or glaciofluvial deposits, which can contain gravels. This group comprises 7% of the RAA and includes TBR (Twin Bridges) 1, DRSR (Drywood/Sarcee) 1, DRW (Drywood) 1, HFD (Hatfield) 6 and ZCOzbl18 (Miscellaneous Coarse) (Table 3-19).
- Undifferentiated or transitional soil map units occupy 2,446 ha, or 11%, of the RAA (Table 3-19). These units can be further broken down into:
 - Fine to very fine-textured glaciolacustrine with variably textured fluvial parent materials or coarser textured inclusions occupy 4% of the RAA: FSH6, POT3 and POT6.
 - Medium or coarse textured fluvial overlying gravelly very coarse glaciofluvial parent materials occupy 2% of the RAA: SCO (Strathcona) 1, SRC3 and SUD (Sundre) 1.
 - Coarse to very coarse-textured parent materials with inclusions of finer textures occupy
 2% of the RAA: BRMT (Bragg Creek/Mitford) 16, CRDR (Carway/Drywood) 18.
 - Variably textured fluvial parent materials occupy 2% of the RAA: SRC1, ZCzblZG (Miscellaneous Coarse) 1, ZGW (Miscellaneous Gleysol) 20.
 - Moderately fine-textured till parent material over medium textured softrock occupy less than 1% of the RAA: DVHF (Dunvargan/Hatfield) 1
- The unit used to represent open water (ZZ) occupies less than 1% or 75 ha, of the RAA (Table 3-19).

For detailed composition of each soil map unit see Table 3-20. For the dominant surficial texture see Figure 3-5. For individual series description see the map unit description tables in Section 5.4.

Soils March 2018

Table 3-19 Dominant Surficial Materials in the RAA

Dominant Surficial Material	Area of RAA (ha)	% of RAA
Units with fine to very fine-textured parent materials	11,720.4	52.0
Units with moderately fine to very fine-textured parent materials	4,003.5	17.8
Units with moderately fine to fine-textured parent materials	687.2	3.0
Units with moderately fine-textured parent materials	1,976.8	8.8
Units with medium to coarse-textured parent materials	1,631.0	7.2
Undifferentiated unit, transitional areas	2,445.9	10.9
Other Units	75.4	0.3
Totals	22,540.2	100.0
NOTES:		
Areas and proportions might not add up to totals because of rounding		

Soils March 2018

Table 3-20RAA Soil Map Unit Legend

Map Unit Label	Soil Series	Parent Materials	Soil Classification	Area of RAA (ha)	% of RAA
Units with fine to	very fine-textured parent mate	rials	· · ·	11,720.41	52.0
ATL3	Antler	Till	Black Chernozemics	2.5	<0.1
FSH1	Fish Creek	Glaciolacustrine	Black Chernozemics	4344.1	19.3
			Orthic Black Chernozems	2,112.8	9.4
FSH2	Fish Creek	Glaciolacustrine	Black Chernozemics, Humic Gleysols	1140.2	5.1
			Orthic Black Chernozems, Gleysolics	698.4	3.1
FSH3	Fish Creek	Glaciolacustrine over Till	Black Chernozemics	1,199.8	5.3
LLK1	Lloyd Lake	Glaciolacustrine	Black Chernozemics	488.3	2.2
LLK2	Lloyd Lake	Glaciolacustrine	Black Chernozemics, Solodized Solonetz, Saline Humic Gleysols	0.2	<0.1
LLK3	Lloyd Lake	Glaciolacustrine over Till	Black Chernozemics	<0.1	<0.1
POT1	Pothole Creek	Glaciolacustrine, Lacustrine	Humic Gleysols	83.5	0.4
POT2	Pothole Creek	Glaciolacustrine, Lacustrine	Humic Gleysols, Black Chernozemics	319.0	1.4
RB4	Rough Broken	Till, Alluvium	Undifferentiated	15.4	0.1
RB5	Rough Broken	Glaciolacustrine	Undifferentiated	235.4	1.0
ELRS2	Elbow/Robinson	Glaciolacustrine, till	Dark Grey Luvisols, Gleysolics	843.4	3.7
FSPO1	Fish creek/Pothole Creek	Glaciolacustrine	Orthic Black Chernozems, Orthic Humic Gleysols	237.7	1.1
Units with modera	ately fine to very fine-textured	parent materials		4,003.5	17.8
DVFS1	Dunvargan/Fish Creek	Glaciolacustrine, Till	Black Chernozemics and Dark Gray Luvisols	112.0	0.5
			Orthic Black Chernozems	255.3	1.1
DVG1	Dunvargan	Till	Black Chernozemics	1,907.3	8.5
			Orthic Black Chernozems	3.0	<0.1
DVG2	Dunvargan	Till	Black Chernozemics, Humic Gleysols	119.6	0.5
			Orthic Black Chernozems, Gleysolics	90.2	0.4
DVG3	Dunvargan	Till	Black Chernozemics	1,481.0	6.6
DVG4	Dunvargan	Till	Orthic Black Chernozems, Rego Chernozems - potentially eroded or calcareous	27.2	0.1
DVG5	Dunvargan	Till, various	Orthic Black Chernozems	7.9	0.0
Units with modera	ately fine to fine-textured pare	nt materials		687.2	3.0
MFT18	Maycroft	Glaciolacustrine, various	Orthic Black Chernozems, Gleysolics	254.3	1.1
MFT5	Maycroft	Glaciolacustrine, various	Orthic Black Chernozems	432.9	1.9

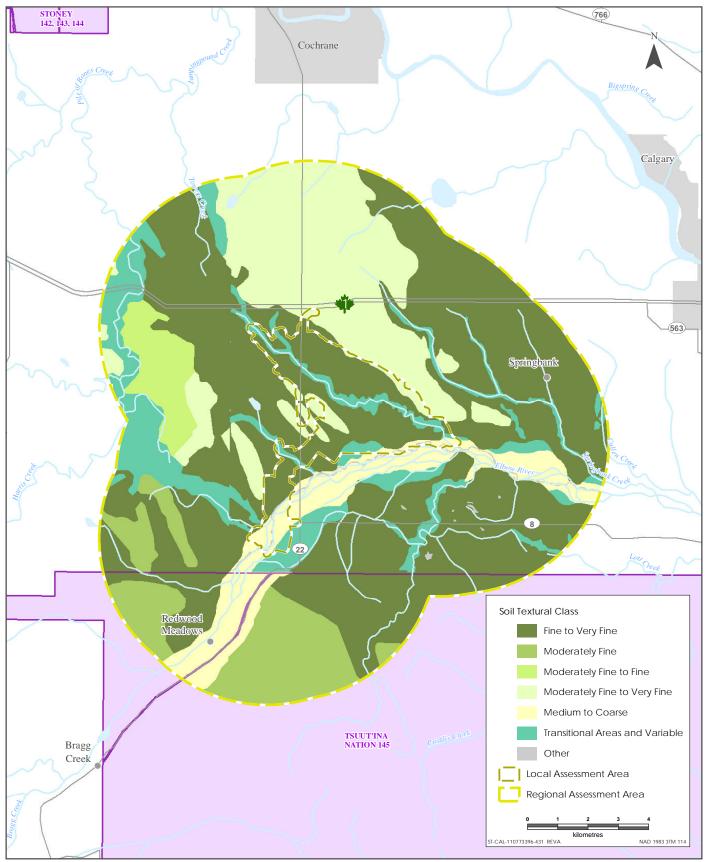

Soils March 2018

Table 3-20RAA Soil Map Unit Legend

Units with moderate/y fine-textured partBVDV1Beauvais/DunvargaBVDV1Seauvais/DunvargaSPR1Spruce RidgeSPR2Spruce Ridge/TougSPTU1Spruce Ridge/TougSPTU2Spruce Ridge/TougSPTU16Spruce Ridge/TougUnits with medium to coarse-textured pTBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1Bragg creek/MitforCRDR18Carway/Drywood	an gravelly or cobbly Till gravelly or cobbly Till gravelly or cobbly Till h Creek gravelly or cobbly Till, till over Softrock h Creek gravelly or cobbly Till h Creek gravelly or cobbly Till arent materials Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Dark Gray Chernozem, Orthic Black Chernozem Orthic Gray Luvisols Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols, Chernozemics Regosols, Humic Regosols, Humic Gleysols Orthic Black Chernozems Orthic Black Chernozem Orthic Black Chernozem Orthic Black Chernozem Orthic Black Chernozem	1,976.8 42.1 297.5 268.3 519.2 393.7 456.1 1,631.0 1,033.7 359.8 1.7 0.1 235.8	8.8 0.2 1.3 1.2 2.3 1.7 2.0 7.2 4.6 1.6 <0.1
SPR1Spruce RidgeSPR2Spruce RidgeSPTU1Spruce Ridge/TougSPTU2Spruce Ridge/TougSPTU16Spruce Ridge/TougUnits with medium to coarse-textured pTBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSUD1SundreBRMT16Bragg creek/Mitfor	gravelly or cobbly Till gravelly or cobbly Till h Creek gravelly or cobbly Till arent materials Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Gray Luvisols Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols, Chernozemics Regosols, Humic Regosols, Humic Gleysols Orthic Black Chernozems Orthic Black Chernozem	297.5 268.3 519.2 393.7 456.1 1,631.0 1,033.7 359.8 1.7 0.1	1.3 1.2 2.3 1.7 2.0 7.2 4.6 1.6 <0.1
SPR2Spruce RidgeSPTU1Spruce Ridge/TougSPTU2Spruce Ridge/TougSPTU16Spruce Ridge/TougUnits with medium to coarse-textured pTBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	gravelly or cobbly Till h Creek gravelly or cobbly Till, till over Softrock h Creek gravelly or cobbly Till h Creek gravelly or cobbly Till arent materials Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols, Chernozemics Regosols, Humic Regosols, Humic Gleysols Orthic Black Chernozems Orthic Black Chernozem Orthic Black Chernozem	268.3 519.2 393.7 456.1 1,631.0 1,033.7 359.8 1.7 0.1	1.2 2.3 1.7 2.0 7.2 4.6 1.6 <0.1
SPTU1Spruce Ridge/TougSPTU2Spruce Ridge/TougSPTU16Spruce Ridge/TougUnits with medium to coarse-textured pTBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSUD1SundreBRMT16Bragg creek/Mitfor	h Creek gravelly or cobbly Till, till over Softrock h Creek gravelly or cobbly Till h Creek gravelly or cobbly Till arent materials Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Gray Luvisols Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols, Chernozemics Regosols, Humic Regosols, Humic Gleysols Orthic Black Chernozems Orthic Black Chernozem Orthic Black Chernozem	519.2 393.7 456.1 1,631.0 1,033.7 359.8 1.7 0.1	2.3 1.7 2.0 7.2 4.6 1.6 <0.1
SPTU2Spruce Ridge/TougSPTU16Spruce Ridge/TougUnits with medium to coarse-textured pTBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	h Creek gravelly or cobbly Till h Creek gravelly or cobbly Till arent materials Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Gray Luvisols, Gleysolics Orthic Gray Luvisols, Chernozemics Regosols, Humic Regosols, Humic Gleysols Orthic Black Chernozems Orthic Black Chernozems Orthic Black Chernozem	393.7 456.1 1,631.0 1,033.7 359.8 1.7 0.1	1.7 2.0 7.2 4.6 1.6 <0.1
SPTU16Spruce Ridge/TougUnits with medium to coarse-textured pTBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	h Creek gravelly or cobbly Till arent materials Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Gray Luvisols, Chernozemics Regosols, Humic Regosols, Humic Gleysols Orthic Black Chernozems Orthic Black Chernozems Orthic Black Chernozem	456.1 1,631.0 1,033.7 359.8 1.7 0.1	2.0 7.2 4.6 1.6 <0.1
Units with medium to coarse-textured pTBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	arent materials Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Regosols, Humic Regosols, Humic Gleysols Orthic Black Chernozems Orthic Black Chernozems Orthic Black Chernozem	1,631.0 1,033.7 359.8 1.7 0.1	7.2 4.6 1.6 <0.1
TBR1Twin BridgesDRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	Fluvial Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Black Chernozems Orthic Black Chernozems Orthic Black Chernozem	1,033.7 359.8 1.7 0.1	4.6 1.6 <0.1
DRSR1Drywood/SarceeDRW1DrywoodHFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	Glaciofluvial over very gravelly Glaciofluvial, Fluvial Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Black Chernozems Orthic Black Chernozems Orthic Black Chernozem	359.8 1.7 0.1	1.6 <0.1
DRW1 Drywood HFD6 Hatfield ZCOzbl8 misc coarse Undifferentiated unit, transitional areas POT3 Pothole Creek SCO1 Strathcona SRC1 Sarcee SRC3 Sarcee SUD1 Sundre BRMT16 Bragg creek/Mitfor	Glaciofluvial over very gravelly Glaciofluvial Till over Softrock, various Fluvial	Orthic Black Chernozems Orthic Black Chernozem	1.7 0.1	<0.1
HFD6HatfieldZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	Till over Softrock, various Fluvial	Orthic Black Chernozem	0.1	
ZCOzbl8misc coarseUndifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	Fluvial			1
Undifferentiated unit, transitional areasPOT3Pothole CreekSCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor		Orthic Black Chernozem, Orthic Regosol, Orthic Humic Gleysol		<0.1
POT3 Pothole Creek SCO1 Strathcona SRC1 Sarcee SRC3 Sarcee SUD1 Sundre BRMT16 Bragg creek/Mitfor			230.8	1.0
SCO1StrathconaSRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor			2,445.9	10.9
SRC1SarceeSRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	Glaciolacustrine, Lacustrine, Fluvial	Humic Gleysols, Black Chernozemics	730.0	3.2
SRC3SarceeSUD1SundreBRMT16Bragg creek/Mitfor	Fluvial over Glaciofluvial	Black Chernozemics	24.4	0.1
SUD1SundreBRMT16Bragg creek/Mitfor	Fluvial	Black Chernozemics	25.8	0.1
BRMT16 Bragg creek/Mitfor	Fluvial over Glaciofluvial	Black Chernozemics	232.7	1.0
	Fluvial over Glaciofluvial	Dark Gray Chernozemics	286.5	1.3
CRDR18 Carway/Drywood	d Glaciofluvial over very gravelly Glaciofluvial, Organic over Till	Eluviated Eutric Brunisols, Chernozemics, Terric Mesisols	2.1	<0.1
	Glaciofluvial, Glaciofluvial over very gravelly Glaciofluvial, various fine textures	Orthic Black Chernozems, Gleysolics	433.8	1.9
DVHF1 Dunvargan/Hatfield	d Till, Till over Softrock	Orthic Black Chernozems	151.6	0.7
FSH6 Fish Creek	Glaciolacustrine, various coarse textures	Orthic Black Chernozems	86.3	0.4
POT6 Pothole Creek	Glaciolacustrine, various coarse textures	Orthic Humic Gleysols	132.3	0.6
ZCzblZG1 misc coarse	Fluvial, various textures	Orthic Black Chernozem, Orthic Humic Gleysol	330.9	1.5
ZGW20 misc Gleysol	Fluvial, various textures	Orthic Humic Gleysol, Orthic Regosol	9.5	<0.1
Other units			75.4	0.3
ZZ Water	n/a	n/a	75.4	0.3
Total	· · · · · ·		22,540.2	100.0

n/a not applicable

Sources: Base Data - ESRI, Natural Earth, Government of Alberta, Government of Canada Thematic Data - ERBC, Government of Alberta, Stantec Ltd

Soil Textural Classes in the RAA

Soils March 2018

3.2.6 Topography and Soil Development

3.2.6.1 Topography

Topography in the LAA was evaluated using the slope classes assigned to soil delineations (Table 3-21). Approximately 67% of the topography in LAA has slopes of less than 5%. A significant proportion of the LAA (14%) is on gentle slopes of greater than 5% and less than 10% slope. Approximately 6% of the LAA is on moderately steep topography to severe slopes (greater than 10% ranging to 70%), mainly along the escarpments of the Elbow River. The slope classes are displayed on Figure 3-6.

Large ranges (polygon slope class 1-5, 1-6) were used to characterize the floodplains which were intersected with narrow fluvial channels, located on 8% of the topography of the LAA, where side slopes of the channels could reach upwards of 30% slope.

Slopes were not determined for the disturbed map unit (ZDL) (5% of the LAA).

Topographic variation was also examined from the perspective of slopes measured at soil inspection sites. For the 361 soil inspection sites completed in 2016, measured slope gradients ranged from 0% to 70%, corresponding to slope classes ranging from 1 to 8.

Polygon Slope Class	Area of LAA (ha)	% of LAA
1	14.73	0.8
1-3	1.50	0.1
1-5	6.89	0.4
1-6	139.35	7.4
2	680.97	36.1
3	557.73	29.6
4	265.00	14.0
5	70.41	3.7
5-6	3.52	0.2
6	13.31	0.7
6-7	9.30	0.5
6-8	2.55	0.1
7	6.38	0.3
7-8	14.06	0.7

 Table 3-21
 Extent of Slope Classes in the LAA- Soil Mapping

Soils March 2018

Polygon Slope Class	Area of LAA (ha)	% of LAA
8	3.64	0.2
N/A	97.13	5.1
Total	1,886.48	100.0
NOTES:		
Areas and proportions might not a	dd up to totals because of rounding)
N/A = Not Applicable		

Table 3-21 Extent of Slope Classes in the LAA- Soil Mapping

3.2.6.2 Topsoil and Subsoil Thickness

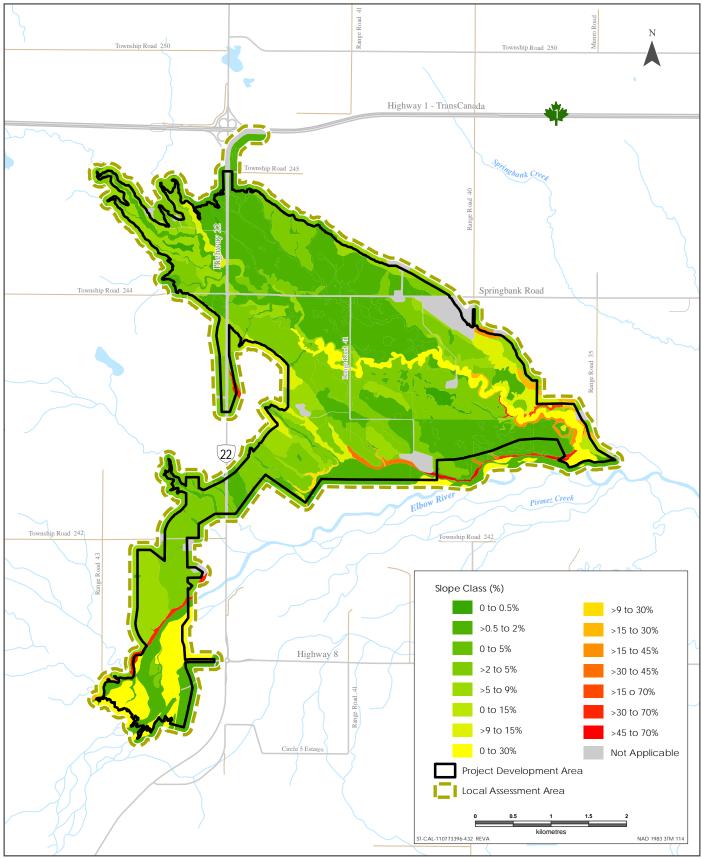
Depths of topsoil (peat and duff layer combined with any mineral topsoil) and subsoil have been reported using a minimum and maximum depth, based on field data collected and global information system (GIS) modelling.

3.2.6.3 Topsoil Depth

The soil map units representing Gleysolic soils in the LAA have consistently larger ranges of topsoil values (POT1, POT2, and POT6) when compared to the Chernozemic, Reclaimed and Regosolic soil map units. Chernozemic soil map units have more consistent topsoil values (less range overall); close in maximum depth to the Gleysolic soil map unit but fewer shallow topsoil occurrences. The Regosols have little or no topsoil in some cases (TBR1, TBR4, TBRgr2). The average topsoil thickness based on field data and GIS modelling is shown for the LAA in Figure 3-7. The range of average topsoil thickness for each soil map unit is displayed in Table 3-22.

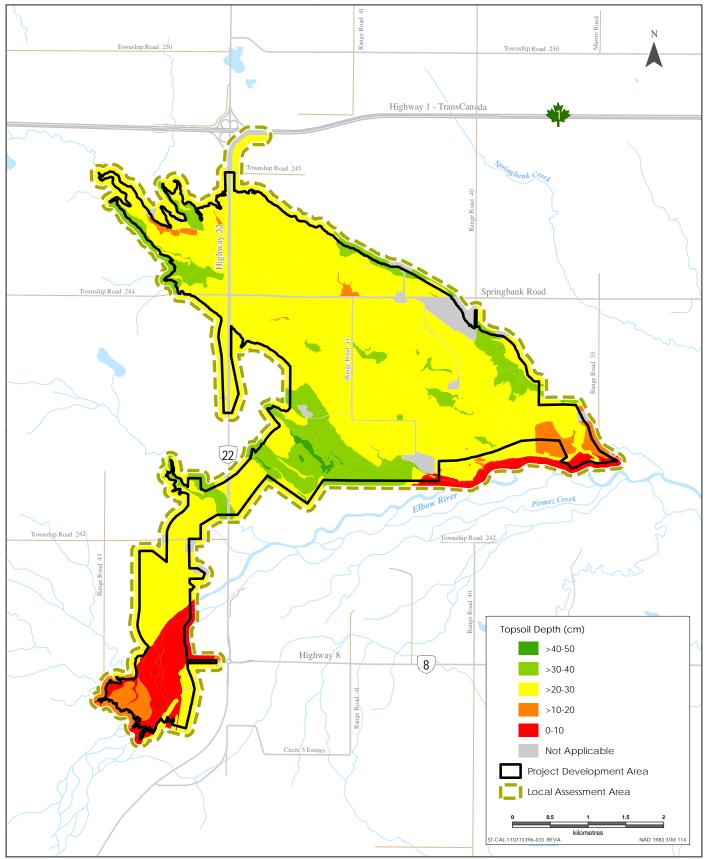
3.2.6.4 Subsoil Depth

Subsoil average thickness varies more than topsoil between the Chernozemic and Gleysolic soil orders. However, the Chernozemic and Gleysolic soil orders are better developed and, therefore, have deeper subsoil than the Regosolic soil order. While a Regosol typically lacks a B horizon, the presence of some subsoil in the LAA is due to weak horizon mixing between the topsoil and lower subsoil or partial upper subsoil horizon development (AC or CA horizon). The average subsoil thickness based on field data and GIS modelling is shown for the LAA in Figure 3-8. The range of average subsoil thickness for each soil map unit is displayed in Table 3-22.

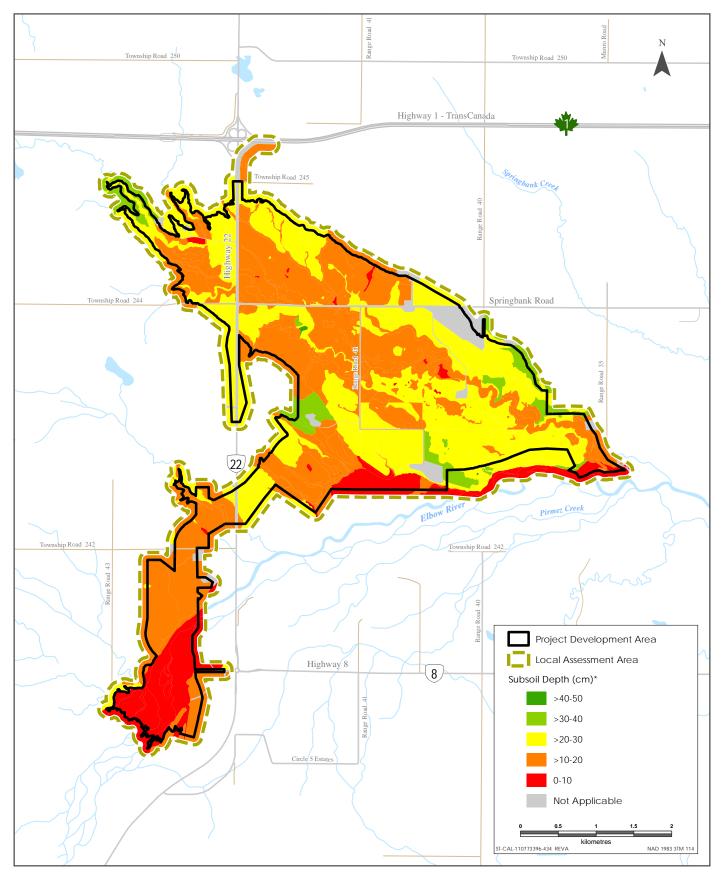


Soils March 2018

Map Unit	Topsoil range (cm) (minimum-maximum)	Subsoil range (cm) (minimum-maximum)	Area of LAA (ha)	% of LAA
Chernozem			1395.7	74.0
DVFS1	20-35	2-31	55.2	2.9
DVFS2	16-38	11-30	304.3	16.1
DVG1	6-38	9-37	281.5	14.9
FSH1	17-40	5-39	276.6	14.7
FSH2	22-36	11-34	437.2	23.2
SRC1	18-23	11-27	35.8	1.9
SRC4	23	11	2.3	0.1
MSTB1	35	6	2.8	0.2
Regosol			182.3	9.7
TBR1	0-5	0-1	6.4	0.3
TBR2	6-20	1-16	50.7	2.7
TBR4	0-6	0-1	11.4	0.6
TBR6	26	11	15.1	0.8
TBSR1	12-21	6-15	30.0	1.6
TBRgr1	3-23	1-7	61.9	3.3
TBRgr2	0-4	0-4	6.8	0.4
Gleysol			210.4	11.2
POT1	14-47	3-31	30.0	1.6
POT2	15-46	1-47	20.5	1.1
POT6	19-49	3-41	43.1	2.3
POT7	20-29	13-26	81.7	4.3
ZGC1	18-48	7-27	35.0	1.9
Other			98.2	5.2
ZDL	N/A	N/A	97.1	5.1
ZREC	27-32	23-34	1.1	0.1
Total			1,886.48	100.0


Table 3-22 Estimated Topsoil and Subsoil Depths for Soil Map Units in the LAA

🚺 Stantec


Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Slope Classes in the LAA

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Topsoil Depths in the LAA

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Subsoil Depths in the LAA

Soils March 2018

3.2.6.5 Wind Erosion

Wind erosion indices are used to determine both topsoil and subsoil wind erosion risk for each soil map unit in the LAA (Tables 3-23 and 3-24). A summary of rating classes is presented in Table 3-25.

The most common wind erosion rating in the LAA for topsoil is low (82%). This is due to adequate moisture for soils in the LAA in combination with clay rich soils, which have adhesive qualities. The second largest class is high at 12%. The high-risk class is associated with coarse-textured soil units associated with fluvial materials (well to rapidly drained soils). The remaining 5% is not rated because they represent the disturbed land map units.

The extent of moderate to severe wind erosion risk for subsoil in the LAA is more prevalent that it is for topsoil. About 80% of the LAA is rated as having a moderate risk for wind erosion; 13% is rated as severe.

Figures 3-9 and 3-10 illustrates areas where topsoil and subsoil erosion risk is high or severe, corresponding to the coarse-textures underlying the Elbow River and scattered, smaller drainages.

Soils March 2018

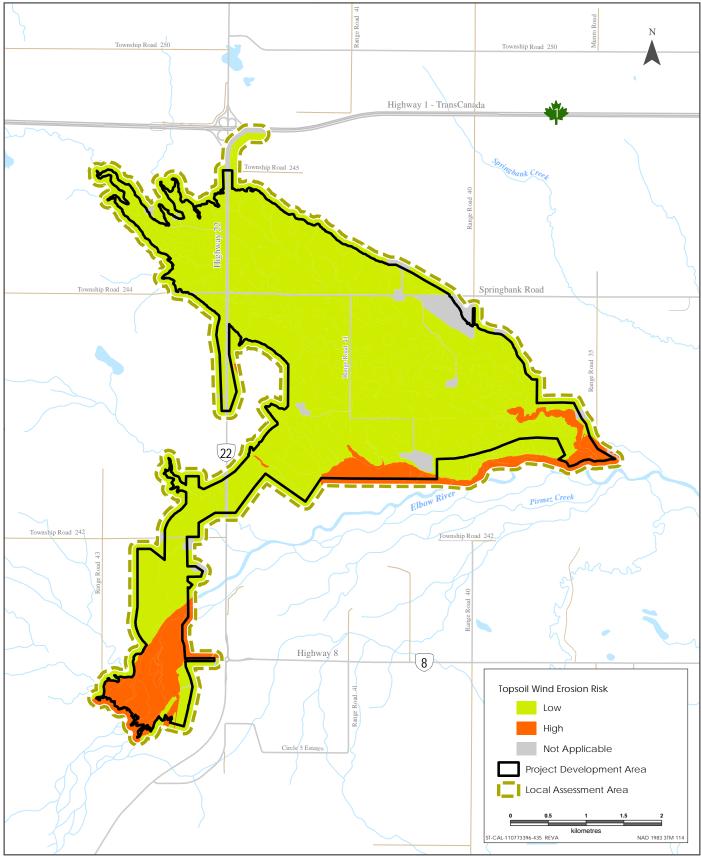
		I	opsoil Water E	rosion Ris	k		Area of	
Soil Map Unit	Negligible (%)	Low (%)	Moderate (%)	High (%)	Severe (%)	Not Rated (%)	LAA (ha)	% of LAA
Units with fir	ne to very fine-	textured t	ill and glaciola	custrine p	parent mate	erials	1448.4	76.8
DVFS1	-	100.0	-	-	-	-	55.2	2.9
DVFS2	-	100.0	-	-	-	-	304.3	16.1
DVG1	-	100.0	-	-	-	-	281.5	14.9
FSH1	-	100.0	-	-	-	-	276.6	14.7
FSH2	-	100.0	-	-	-	-	437.2	23.2
POT1	-	100.0	-	-	-	-	30.0	1.6
POT2	-	100.0	-	-	-	-	20.5	1.1
POT6	-	100.0	-	-	-	-	43.1	2.3
Units with m	nedium-texture	d fluvial p	arent material	S			38.1	2.0
SRC1	-	100.0		-	-	-	35.8	1.9
SRC4	-	100.0		-	-	-	2.3	0.1
Units with m parent mate	noderately coa erials	rse to very	y coarse-textu	red fluvial	and glacio	fluvial	172.1	9.1
TBR1	-	-	-	100.0	-	-	6.4	0.3
TBR2	-	-	-	100.0	-	-	50.7	2.7
TBR4	-	-	-	100.0	-	-	11.4	0.6
TBRgr1	-	-	-	100.0	-	-	61.9	3.3
TBRgr2	-	-	-	100.0	-	-	6.8	0.4
ZGC1	-	-	-	100.0	-	-	35.0	1.9
Undifferenti	ated units, tran	sitional ar	eas				129.7	6.9
POT7	-	60.0	-	40.0	-	-	81.7	4.3
TBR6	-	20.0	-	80.0	-	-	15.1	0.8
TBSR1	-	50.0	-	50.0	-	-	30.0	1.6
MSTB1	-	-	-	100.0	-	-	2.8	0.2
Other							98.2	5.2
ZDL	-	-	-	-	-	100.0	97.1	5.1
ZREC	-	100.0	-	-	-	-	1.1	0.1
Total							1,886.5	100.0
NOTES: Areas and	proportions will	not sum e	exactly to total	s because	e of roundin	g		

Table 3-23Wind Erosion Ratings by Map Unit for Topsoil in the LAA

Soils March 2018

		S	ubsoil Water E	rosion Ris	k			
Soil Map Unit	Negligible (%)	Low (%)	Moderate (%)	High (%)	Severe (%)	Not Rated (%)	Area of LAA (ha)	% of LAA
Units with fi	ne to very fine-	textured	till and glaciol	acustrine	parent ma	terials	1448.4	76.8
DVFS1	-	-	100.0	-	-	-	55.2	2.9
DVFS2	-	-	100.0	-	-	-	304.3	16.1
DVG1	-	-	100.0	-	-	-	281.5	14.9
FSH1	-	-	100.0	-	-	-	276.6	14.7
FSH2	-	-	100.0	-	-	-	437.2	23.2
POT1	-	-	100.0	-	-	-	30.0	1.6
POT2	-	-	100.0	-	-	-	20.5	1.1
POT6	-	-	100.0	-	-	-	43.1	2.3
Units with m	nedium-texture	d fluvial	parent materia	ls			38.1	2.0
SRC1	-	100.0	-	-	-	-	35.8	1.9
SRC4	-	80.0	-	-	20.0	-	2.3	0.1
Units with m parent mat	noderately coa erials	irse to vei	y coarse-textu	ired fluvia	and glac	iofluvial	172.1	9.1
TBR1	-	-	-	-	100.0	-	6.4	0.3
TBR2	-	-	-	-	100.0	-	50.7	2.7
TBR4	-	-	-	-	100.0	-	11.4	0.6
TBRgr1	-	-	-	-	100.0	-	61.9	3.3
TBRgr2	-	-	-	-	100.0	-	6.8	0.4
ZGC1	-	-	-	-	100.0	-	35.0	1.9
Undifferenti	iated units, trar	sitional a	reas				129.7	6.9
POT7		-	100.0	-	-	-	81.7	4.3
TBR6	-	-	20.0	-	80.0	-	15.1	0.8
TBSR1		50.0	-	-	50.0	-	30.0	1.6
MSTB1	-	-	-	-	100.0	-	2.8	0.2
Other							98.2	5.2
ZDL	-	-	-	-	-	100.0	97.1	5.1
ZREC	-	-	100.0	-	-	-	1.1	0.1
Total							1,886.5	100.0
NOTES: Areas and	proportions will	not sum	exactly to tota	lls becau	se of round	ing		

Table 3-24Wind Erosion Ratings by Map Unit for Upper Subsoil in the LAA



Soils March 2018

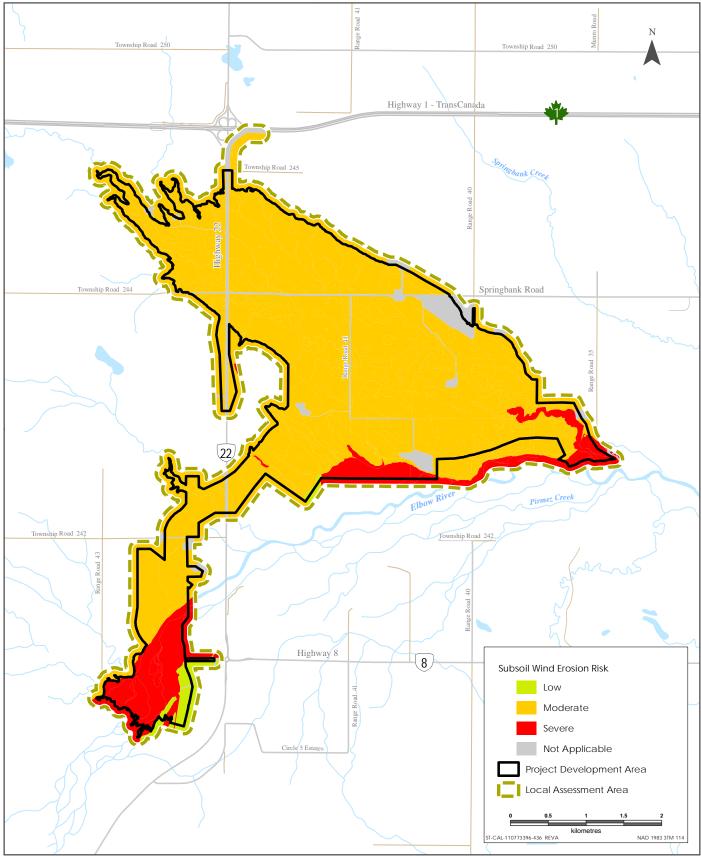

Wind Erosion Rating	Areal Extent of Topsoil in LAA (ha)	% of Topsoil in LAA	Areal Extent of Subsoil in LAA (ha)	% of Subsoil in LAA
Severe	0.0	0.0	235.2	12.5
High	234.8	12.4	0.0	0.0
Moderate	0.0	0.0	1501.5	79.6
Low	1554.6	82.4	52.6	2.8
Negligible	0.0	0.0	0.0	0.0
Not Rated	97.1	5.1	97.1	5.1
Total	1886.5	100.0	1886.5	100.0
NOTE: Areas and proportion	ons will not sum exactl	y to totals because of	rounding	

Table 3-25Wind Erosion by Rating for Topsoil and Subsoil in the LAA

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Soils March 2018

3.2.6.6 Water Erosion

Water erosion risk ratings were calculated for each soil series of the soil map units. Summaries by individual map unit for topsoil and subsoil in the LAA are presented in Tables 3-26 and 3-27. A summary of rating classes is presented in Table 3-28.

In natural landscapes, tree canopies and/or forest floor vegetation protect the mineral soil surface from rainfall erosion. Consequently, water erosion risk for vegetated topsoil in the LAA is very low. However, if vegetation and organic layers are removed, that protection is removed and bare soils are more susceptible to water erosion.

The spatial distribution of water erosion risk for topsoil and subsoil in the LAA is shown in Figure 3-11 and Figure 3-12. Soil units with moderate to severe wind erosion risk ratings for topsoil and subsoil are associated with soil map units that have steeper slope gradients and finer subsoil textures (DVG1). Soil units ranging from very low to low wind erosion risk for topsoil and subsoil include those formed on very coarse-textured glaciofluvial materials (TBR1, TBR4, TBR6 (very low to moderate), TBRgr2, TBSR1 and MSTB1). Soils that have developed on coarse textured parent materials and Gleysol-dominated map units (generally with low slope gradients) have a very low or low risk of water erosion (ZGC1, DVFS1, FSH2, POT1, POT2, POT6). Medium textured soils on low slope gradients have a very low risk of water erosion (SRC1, SRC4).

		Το	psoil Water Ero	sion Risk ¹				
Soil Map Unit	Very Low (%)	Low (%)	Moderate (%)	High (%)	Severe (%)	Not Rated (%)	Area of LAA (ha)	% of LAA
Units with fi	ine to very f	fine-textured til	l and glaciolad	custrine p	arent mate	rials	1448.4	76.8
DVFS1	99.5	0.5	-	-	-	-	55.2	2.9
DVFS2	100.0	-	-	-	-	-	304.3	16.1
DVG1	92.3	0.9	1.8	-	5.0	-	281.5	14.9
FSH1	100.0	-	-	-	-	-	276.6	14.7
FSH2	100.0	-	-	-	-	-	437.2	23.2
POT1	100.0	-	-	-	-	-	30.0	1.6
POT2	100.0	-	-	-	-	-	20.5	1.1
POT6	100.0	-	-	-	-	-	43.1	2.3
Units with n	nedium-tex	tured fluvial pa	arent materials				38.1	2.0
SRC1	100.0	-	-	-	-	-	35.8	1.9
SRC4	100.0	-	-	-	-	-	2.3	0.1

Table 3-26 Water Erosion Risk Ratings by Map Unit for Topsoil in the LAA

Soils March 2018

		Тој	osoil Water Ero	sion Risk ¹				
Soil Map Unit	Very Low (%)	Low (%)	Moderate (%)	High (%)	Severe (%)	Not Rated (%)	Area of LAA (ha)	% of LAA
Units with r parent ma		coarse to very	coarse-textur	ed fluvial	and glaciof	luvial	172.1	9.1
TBR1	86.5	13.5 (Slope Class 1-6)	-	-	-	-	6.4	0.3
TBR2	100.0	-	-	-	-	-	50.7	2.7
TBR4	70.6	29.4 (Slope Class 1-6)	-	-	-	-	11.4	0.6
TBRgr1	100.0	-	-	-	-	-	61.9	3.3
TBRgr2	85.2	14.8 (Slope Class 1-6)	-	-	-	-	6.8	0.4
ZGC1	100.0	-	-	-	-	-	35.0	1.9
Undifferent	tiated units,	transitional are	as				129.7	6.9
POT7	100.0	-	-	-	-	-	81.7	4.3
TBR6	98.7	1.1	0.3	-	-	-	15.1	0.8
TBSR1	100.0	-	-	-	-	-	30.0	1.6
MSTB1	-	100.0 (Slope Class 7)	-	-	-	-	2.8	0.2
Other							98.2	5.2
ZDL	-	-	-	-	-	100.0	97.1	5.1
ZREC	100.0	-	-	-	-	-	1.1	0.1
Total							1,886.5	100.0
NOTES:								

Table 3-26Water Erosion Risk Ratings by Map Unit for Topsoil in the LAA

Areas and proportions will not sum exactly to totals because of rounding

¹ Ratings vary within individual map units based on proportions of series with varying textures as well as slope classes (See Table 3-17 for detailed map unit descriptions)

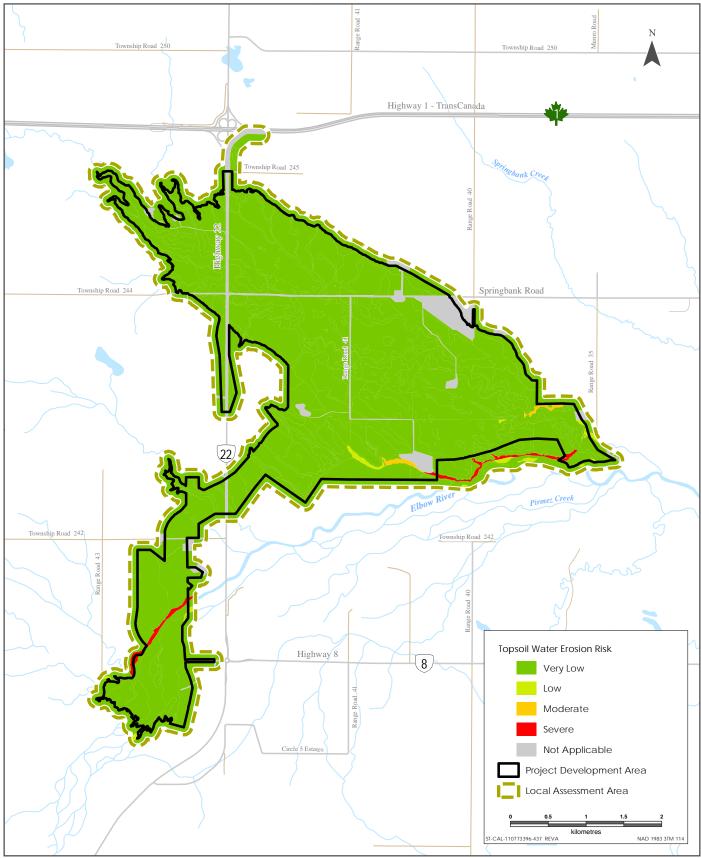
Soils March 2018

			Subsoil Water	Erosion Ris	sk ¹			
Soil Map Unit	Very Low (%)	Low (%)	Moderate (%)	High (%)	Severe (%)	Not Rated (%)	Area of LAA (ha)	% of LAA
Units with fi	ne to very fir	ne-texture	d till and glacid	olacustrine	e parent ma	aterials	1448.4	76.8
DVFS1	100.0	-	-	-	-	-	55.2	2.9
DVFS2	100.0	-	-	-	-	-	304.3	16.1
DVG1	92.3	0.9	1.8	0.3	4.7	-	281.5	14.9
FSH1	100.0	-	-	-	-	-	276.6	14.7
FSH2	100.0	-	-	-	-	-	437.2	23.2
POT1	100.0	-	-	-	-	-	30.0	1.6
POT2	100.0	-	-	-	-	-	20.5	1.1
POT6	100.0	-	-	-	-	-	43.1	2.3
Units with n	nedium-textu	ured fluvia	I parent materi	als			38.1	2.0
SRC1	100.0	-	-	-	-	-	35.8	1.9
SRC4	100.0	-	-	-	-	-	2.3	0.1
Units with n parent mat	-	oarse to v	very coarse-tex	tured fluvi	ial and glac	ciofluvial	172.1	9.1
TBR1	86.5	13.5	-	-	-	-	6.4	0.3
TBR2	100.0	-	-	-	-	-	50.7	2.7
TBR4	70.6	29.4	-	-	-	-	11.4	0.6
TBRgr1	100.0	-	-	-	-	-	61.9	3.3
Ibitgi i	100.0							
0	85.2	14.8	-	-	-	-	6.8	0.4
TBRgr2		14.8 -	-	-	-	-	6.8 35.0	0.4
TBRgr2 ZGC1	85.2	-	-			-		
TBRgr2 ZGC1 Undifferent	85.2 100.0	-	-			-	35.0	1.9
TBRgr2 ZGC1 Undifferent POT7	85.2 100.0 iated units, tr	-	-	-	-	-	35.0 129.7	1.9 6.9
TBRgr2 ZGC1	85.2 100.0 iated units, tr 100.0	- ransitional	- areas -	-	-	- - - -	35.0 129.7 81.7	1.9 6.9 4.3
TBRgr2 ZGC1 Undifferent POT7 TBR6 TBSR1	85.2 100.0 iated units, tr 100.0 98.7	- ransitiona - 1.1	- l areas - 0.3	-	-		35.0 129.7 81.7 15.1	1.9 6.9 4.3 0.8
TBRgr2 ZGC1 Undifferent POT7 TBR6	85.2 100.0 iated units, tr 100.0 98.7 100.0	- ransitiona - 1.1 -	- l areas - 0.3	-	-		35.0 129.7 81.7 15.1 30.0	1.9 6.9 4.3 0.8 1.6
TBRgr2 ZGC1 Undifferent POT7 TBR6 TBSR1 MSTB1 Other	85.2 100.0 iated units, tr 100.0 98.7 100.0	- ransitiona - 1.1 -	- l areas - 0.3	-	-		35.0 129.7 81.7 15.1 30.0 2.8	1.9 6.9 4.3 0.8 1.6 0.2
TBRgr2 ZGC1 Undifferent POT7 TBR6 TBSR1 MSTB1	85.2 100.0 iated units, tr 100.0 98.7 100.0 -	- ransitiona - 1.1 - 100.0	- l areas - 0.3	-			35.0 129.7 81.7 15.1 30.0 2.8 98.2	1.9 6.9 4.3 0.8 1.6 0.2 5.2

Water Erosion Risk Ratings by Map Unit for Subsoil in the LAA Table 3-27

Areas and proportions will not sum exactly to totals because of rounding

¹ Ratings vary within individual map units based on proportions of series with varying textures as well as slope classes (See Table 3-17 for detailed map unit descriptions)



Soils March 2018

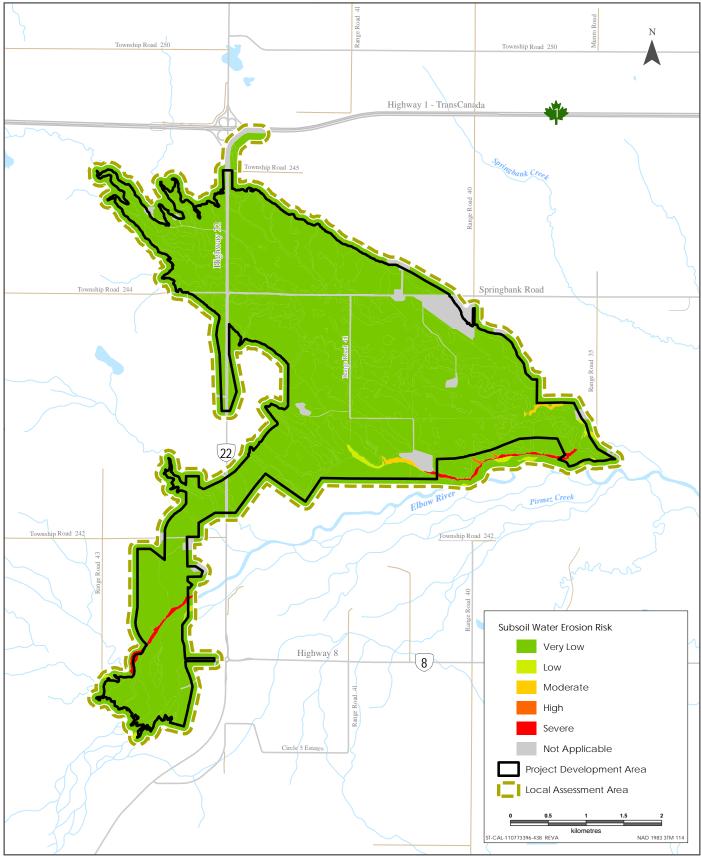

Wind Erosion Rating	Areal Extent of Topsoil in LAA (ha)	% of Topsoil in LAA	Areal Extent of Subsoil in LAA (ha)	% of Subsoil in LAA
Severe	14.0	0.7	13.3	0.7
High	0.0	0.0	0.7	0.0
Moderate	5.1	0.3	5.1	0.3
Low	11.1	0.6	10.8	0.6
Very Low	1759.1	93.2	1759.4	93.3
Not Rated	97.1	5.1	97.1	5.1
Total	1886.5	100.0	1886.5	100.0
NOTE: Areas and proportic	ons will not sum exactl	y to totals because of	rounding	

Table 3-28Water Erosion by Rating for Topsoil and Subsoil in the LAA

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Soils March 2018

3.2.6.7 Soil Compaction

Compaction is generally related to soil moisture content and texture, with wetter and finertextured soils tending to have higher compaction ratings. The dominant decile for compaction for topsoil and subsoil is presented for each soil map unit in the LAA (Table 3-29 and Table3-30). Areal summaries for the LAA are presented in Table 3-31 and Table 3-32.

Much of the LAA is rated moderate to high for compaction risk for topsoil (1,565 ha, or 83%) because the area generally has low relief and fine textures. All Gleysolic soil series are rated high for topsoil compaction risk (POT1, POT2, POT6, POT7), with the exception of the ZGC series, a coarse-textured Gleysol that is rated moderate for compaction risk. Even some of the better drained mineral soils (Dunvargan and Fish Creek soil) are rated moderate due to low relief. The Regosolic soils are rated low for topsoil compaction risk (Twin Bridges). The disturbed land unit does not receive a rating.

Soil series rated for subsoil compaction risk closely follow those rated for topsoil compaction risk, with the exception of the coarse Gleysol and Reclaimed soil units. The ZGC series is rated moderate for topsoil compaction risk but low for subsoil risk. And the ZREC unit is rated low for topsoil compaction risk and moderate for subsoil.

Figure 3-13 and Figure 3-14 display the generalized compaction risk of each unit for the topsoil and subsoil, respectively.

Soils March 2018

Soil Map Unit	Topsoil Compaction Rating	Area of LAA (ha)	% of LAA
Units with fine	to very fine-textured till and glaciolacustrine parent materials	1448.4	76.8
DVFS1	Moderate	55.2	2.9
DVFS2	Moderate	304.3	16.1
DVG1	Moderate	281.5	14.9
FSH1	Moderate	276.6	14.7
FSH2	Moderate	437.2	23.2
POT1	High	30.0	1.6
POT2	High	20.5	1.1
POT6	High	43.1	2.3
Units with med	lium-textured fluvial parent materials	38.1	2.0
SRC1	Low	35.8	1.9
SRC4	Low	2.3	0.1
	derately coarse to very coarse-textured fluvial and parent materials	172.1	9.1
TBR1	Low	6.4	0.3
TBR2	Low	50.7	2.7
TBR4	Low	11.4	0.6
TBRgr1	Low	61.9	3.3
TBRgr2	Low	6.8	0.4
ZGC1	Moderate	35.0	1.9
Undifferentiate	ed, transitional areas	129.7	6.9
POT7	High	81.7	4.3
TBR6	Low	15.1	0.8
TBSR1	Low	30.0	1.6
MSTB1	Low	2.8	0.2
Other		98.2	5.2
ZDL	Not Rated	97.1	5.1
ZREC	Low	1.1	0.1
Total	·	1,886.48	100.0
NOTES: Areas and pro	portions will not sum exactly to totals because of rounding		

Table 3-29 Topsoil Compaction Risk Ratings for Soil Map Units in the LAA

Soils March 2018

Soil Map Unit	Subsoil Compaction Rating	Area of LAA (ha)	% of LAA
Units with fin materials	e to very fine-textured till and glaciolacustrine parent	1448.4	76.8
DVFS1	Moderate	55.2	2.9
DVFS2	Moderate	304.3	16.1
DVG1	Moderate	281.5	14.9
FSH1	Moderate	276.6	14.7
FSH2	Moderate	437.2	23.2
POT1	High	30.0	1.6
POT2	High	20.5	1.1
POT6	High	43.1	2.3
Units with me	edium-textured fluvial parent materials	38.1	2.0
SRC1	Low	35.8	1.9
SRC4	Low	2.3	0.1
	oderately coarse to very coarse-textured fluvial and parent materials	172.1	9.1
TBR1	Low	6.4	0.3
TBR2	Low	50.7	2.7
TBR4	Low	11.4	0.6
TBRgr1	Low	61.9	3.3
TBRgr2	Low	6.8	0.4
ZGC1	Low	35.0	1.9
Undifferentia	ited, transitional areas	129.7	6.9
POT7	High	81.7	4.3
TBR6	Low	15.1	0.8
TBSR1	Low	30.0	1.6
MSTB1	Low	2.8	0.2
Other		98.2	5.2
ZDL	Not Rated	97.1	5.1
	Moderate	1.1	0.1
ZREC			

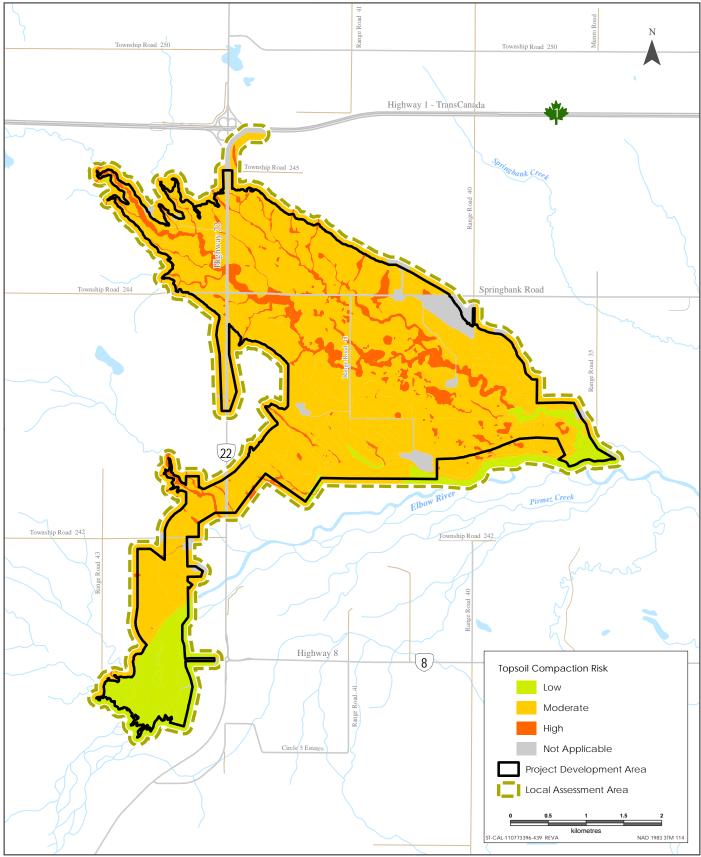
Table 3-30Subsoil Compaction Risk Ratings for Map Units in the LAA

Areas and proportions will not sum exactly to totals because of rounding

N/A = Not Applicable

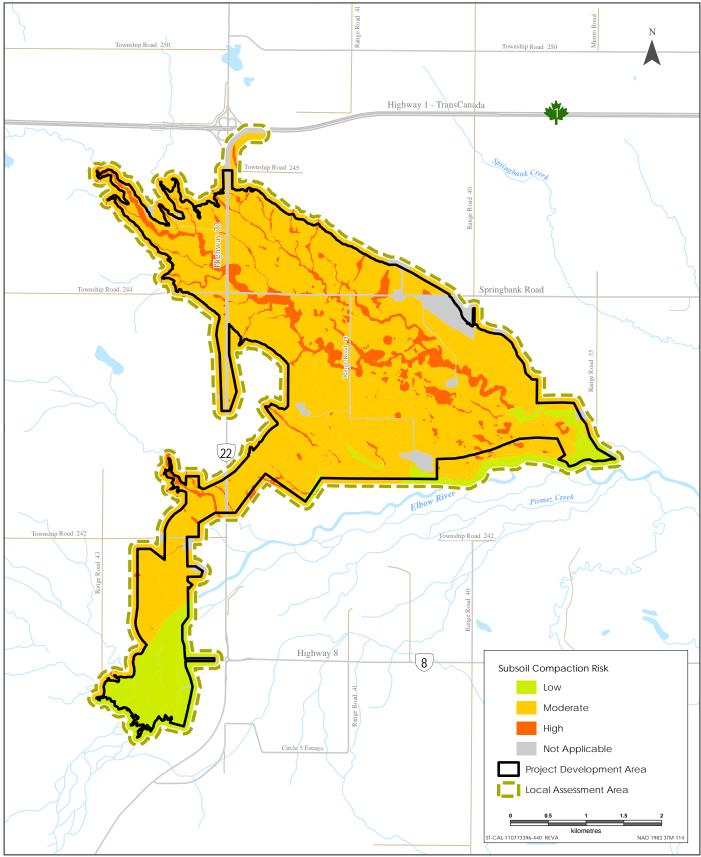
N/R = Not Rated

Soils March 2018


Table 3-31 Topsoil Compaction Summary in the LAA

	Areal Extent in LAA	
Compaction Rating	(ha)	% of LAA
Low	224.2	11.9
Moderate	1389.8	73.7
High	175.3	9.3
Not Rated	97.1	5.1
Total	1,886.5	100.0
NOTE:		
Areas and proportions will not sum exactly to	o totals because of rounding	

Table 3-32 Subsoil Compaction Summary in the LAA


	Areal Extent in LAA	
Compaction Rating	(ha)	% of LAA
Low	258.2	13.7
Moderate	1355.8	71.9
High	175.3	9.3
Not Rated	97.1	5.1
Total	1,886.5	100.0
NOTE:		
Areas and proportions will not sum exactly	y to totals because of rounding	

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Topsoil Compaction Risk Ratings in the LAA

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Soils March 2018

3.2.6.8 Soil Rutting

Rutting risk is summarized by soil map unit in Table 3-33. Lower ratings are typically associated with good drainage or coarse textures. Higher ratings reflect higher moisture content or finer textures. Slope affects soil moisture content and how easily machinery can move (e.g., it is more difficult to move up a steep slope than on a level surface). Summarized rutting risk ratings for topsoil and subsoil are summarized in Table 3-34 and Table 3-35. The first decile rutting and compaction ratings for topsoil and subsoil were presented for each map unit.

The topsoil and subsoil rutting risk for soils derived from coarse-textured glaciofluvial or fluvial parent materials in the LAA is low (TBR1, TBR2, TBR4, TBR6, TBRgr1, TBRgr2, TBSR1 and MSTB1), unless the soils are Gleysolic (ZGC1), which are rated as moderate.

Gleysols developed on fine to very fine-textured glaciolacustrine soils are high risk for rutting on both topsoil and subsoil in the LAA, which includes POT1, POT2, POT6 and POT7.

Chernozems developed on fine to very fine textured till or glaciolacustrine range from low to moderate for rutting risk of both topsoil and subsoil.

As a whole, 1,614 ha, or 86 percent of the topsoil and subsoil within the LAA boundary is low to moderate for rutting risk, with 9% (175 ha) rated as high. The remainder is not rated (5%).

Spatially, high rutting risk for topsoil and subsoil within the LAA is well distributed in the frequent depressional areas associated with gently sloping topography (see Figures 3-15 and 3-16).

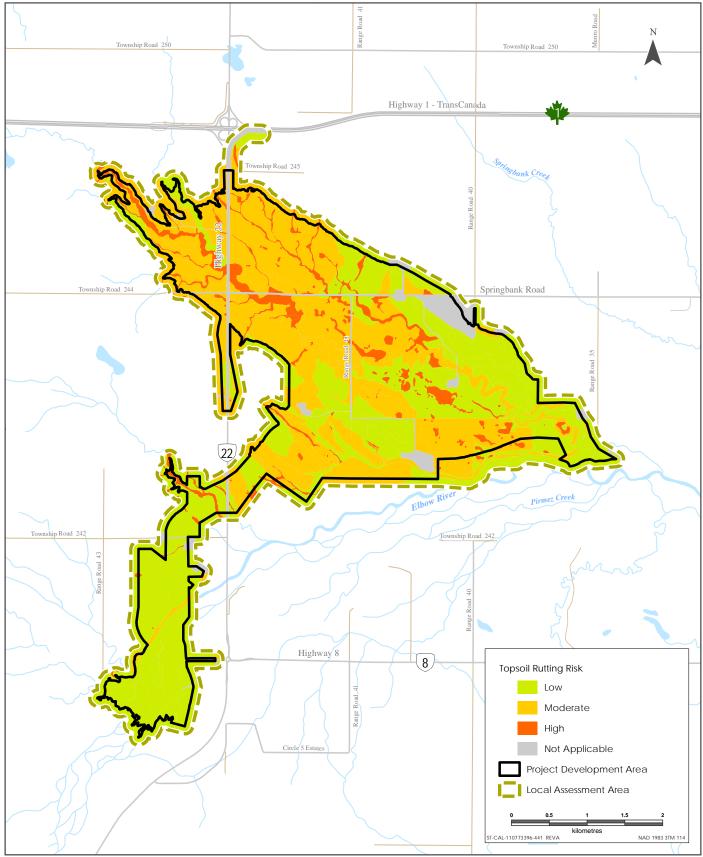
Figures 3-15 and Figure 3-16 show the spatial distribution and extent of the generalized rutting risk for topsoil and subsoil, respectively, for each soil map unit.

Soils March 2018

Soil Map Unit	Topsoil Rutting Risk Rating	Subsoil Rutting Risk Rating	Area of LAA (ha)	% of LAA
Units with fine	to very fine-textured till and	glaciolacustrine parent materials	1448.4	76.8
DVFS1	Low	Low	55.2	2.9
DVFS2	Low	Low	304.3	16.1
DVG1	Low	Low	281.5	14.9
FSH1	Moderate Moderate		276.6	14.7
FSH2	Moderate	Moderate	437.2	23.2
POT1	High	High	30.0	1.6
POT2	High	High	20.5	1.1
POT6	High	High	43.1	2.3
Units with med	lium-textured fluvial parent r	naterials	38.1	2.0
SRC1	Low	Low	35.8	1.9
SRC4	Low	Low	2.3	0.1
Units with moc parent materia		se-textured fluvial and glaciofluvial	172.1	9.1
TBR1	Low	Low	6.4	0.3
TBR2	Low	Low	50.7	2.7
TBR4	Low	Low	11.4	0.6
TBRgr1	Low	Low	61.9	3.3
TBRgr2	Low	Low	6.8	0.4
ZGC1	Moderate	Moderate	35.0	1.9
Undifferentiate	ed units, transitional areas		129.7	6.9
POT7	High	High	81.7	4.3
TBR6	Low	Low	15.1	0.8
TBSR1	Low	Low	30.0	1.6
MSTB1	Low	Low	2.8	0.2
Other Units			98.2	5.2
ZDL	N/R	N/R	97.1	5.1
ZREC	Low	Low	1.1	0.1
Total		·	1,886.5	100.0
NOTES: Areas and pro N/R = Not Rate		o totals because of rounding		

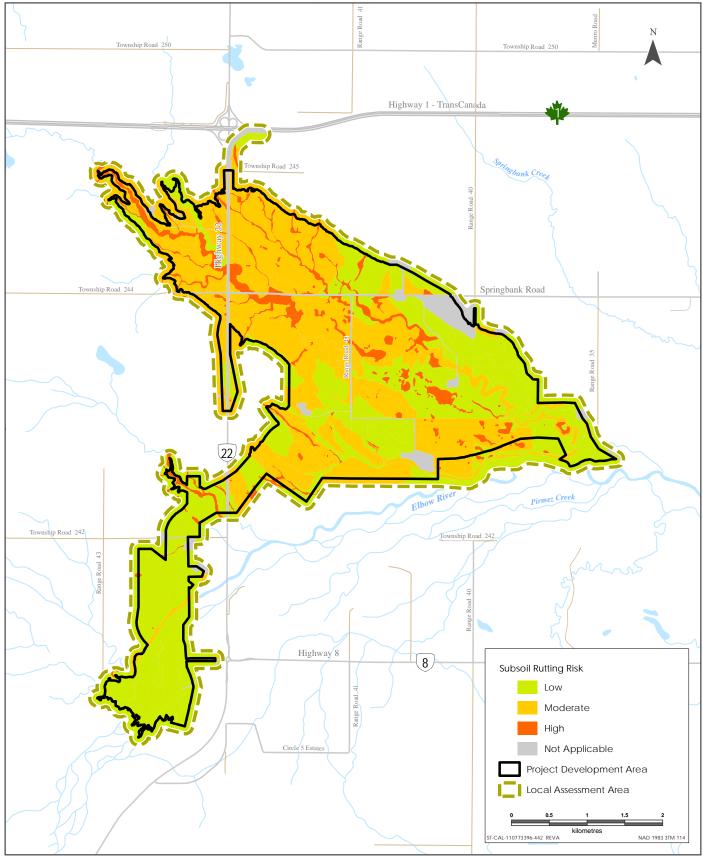
Table 3-33 Rutting Risk Ratings for Topsoil and Subsoil in Soil Map Units in the LAA

Soils March 2018


Table 3-34 Topsoil Rutting Risk Summary in the LAA

	Areal Extent in LAA	
Rutting Rating	(ha)	% of LAA
High	175.3	9.3
Moderate	748.9	39.7
Low	865.1	45.9
Not Rated	97.1	5.1
Total	1,886.5	100.0
NOTE:		
Areas and proportions will not sum exac	ctly to totals because of rounding	

Table 3-35 Subsoil Rutting Risk Summary in the LAA


	Areal Extent in LAA		
Rutting Rating	(ha)	% of LAA	
High	175.3	9.3	
Moderate	748.9	39.7	
Low	865.1	45.9	
Not Rated	97.1	5.1	
Total	1,886.5	100.0	
NOTE:			
Areas and proportions will not sum ex	actly to totals because of rounding		

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

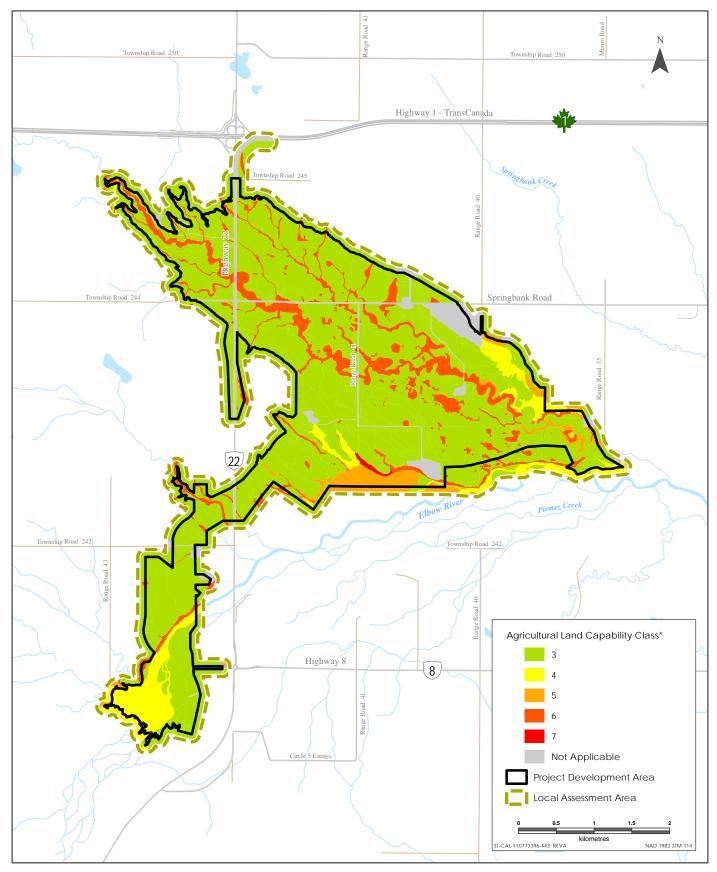
Topsoil Rutting Risk Ratings in the LAA

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Subsoil Rutting Risk Ratings in the LAA

Soils March 2018

3.2.6.9 Agricultural Land Capability


The agricultural capability of soils in the LAA are limited by the following factors:

- climate
- poor drainage (Gleysolic soils)
- topography (slopes of Class 5 or greater)
- stoniness and shallow depth to bedrock (Twin Bridges and Mesa Butte units)
- moisture holding capacity (TBRgr) and structure (shallow to an impenetrable heavy clay layer)

Extensive areas are rated Class 3 (76%), which is the best possible rating due to a shortened growing season, with relatively equal portions of Class 4 (7%), Class 5 (5%) and Class 6 (8%) (Table 3-36). A small percentage of Class 7 (less than1%) was related to the very steep topography by the Elbow River. The soils labeled as not rated include the 5% of the LAA that is mapped as disturbed (Table 3-37).

Figure 3-17 shows the spatial distribution and extent of the Agricultural Land Capabilities for each soil map unit present in the LAA.

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Agricultural Land Capability Classes in the LAA

Soils March 2018

Soil Map Unit	Agricultural Land Capability Class						Area of LAA			
	1 (%)	2 (%)	3 (%)	4 (%)	5 (%)	6 (%)	7 (%)	N/R %	(ha)	% of LAA
Inits with fine to very fine-textured	till and glaciolacustrin	e parent materials							1448.4	76.8
DVFS1	-	-	60.1	31.6	8.3	-	-	-	55.2	2.9
DVFS2	-	-	100.0	-	-	-	-	-	304.3	16.1
DVG1	-	-	76.6	7.5	7.4	8.5	-	-	281.5	14.9
SH1	-	-	100.0	-	-	-	-	-	276.6	14.7
SH2	-	-	100.0	-	-	-	-	-	437.2	23.2
POT1	-	-	-	-	-	100.0	-	-	30.0	1.6
POT2	-	-	20.0	-	-	80.0	-	-	20.5	1.1
OT6	-	-	49.3	-	0.7	50.0	-	-	43.1	2.3
Inits with medium-textured fluvial	parent materials								38.1	2.0
RC1	-	-	100.0	-	-	-	-	-	35.8	1.9
RC4	-	-	100.0	-	-	-	-	-	2.3	0.1
Inits with moderately coarse to ve	ry coarse-textured fluv	ial and glaciofluvial	parent materials						172.1	9.1
BR1	-	-	100.0	-	-	-	-	-	6.4	0.3
BR2	-	-	100.0	-	-	-	-	-	50.7	2.7
BR4	-	-	80.0	3.4	16.6	-	-	-	11.4	0.6
BRgr1	-	-	-	100.0	-	-	-	-	61.9	3.3
BRgr2	-	-	-	-	100.0	-	-	-	6.8	0.4
GC1	-	-	-	-	100.0	-	-	-	35.0	1.9
Indifferentiated units, transitional a	areas								129.7	6.9
POT7	-	-	11.9	8.1	20.0	60.0	-	-	81.7	4.3
BR6	-	-	100.0	-	-	-	-	-	15.1	0.8
BSR1	-	-	12.8	87.2	-	-	-	-	30.0	1.6
/ISTB1	-	-	-	-	-	50.0	50.0	-	2.8	0.2
Other units							98.2	5.2		
DL	-	-	-	-	-	-	-	100.0	97.1	5.1
REC	-	-	-	100.0	-	-	-	-	1.1	0.1
otal									1,886.5	100.0

Table 3-36Agricultural Land Capability Ratings for Map Units in the LAA

N/R = Not rated

Soils March 2018

Soils March 2018

Table 3-37	Agricultural Land (Capability Summary of the	e LAA
------------	---------------------	---------------------------	-------

Agricultural Land Capability Class	Area of LAA (ha)	% of LAA
1	0.0	0.0
2	0.0	0.0
3	1425.2	75.5
4	134.6	7.2
5	85.9	4.6
6	142.2	7.5
7	1.4	0.1
Not Rated	97.1	5.1
Total	1,886.5	100.0
NOTE:		
Areas and proportions will not sum exa	actly to totals because of roundi	ng

Soils March 2018

3.2.6.10 Reclamation Suitability

Reclamation suitability ratings are summarized by soil map unit in Table 3-38 and Table 3-39, and grouped into summaries in Table 3-40 and Table 3-41 for first lift and second lift ratings for the LAA.

First lift is defined as topsoil layers, while second lift is defined as the mineral horizon immediately below either the topsoil or organic horizon. Peaty surface layers are not rated for first lift reclamation suitability because the system does not rate organic horizons (TBRgr). In addition, disturbed lands and reclaimed profiles are not rated for either lift. Figures 3-18 and Figure 3-19 show reclamation suitability ratings in the LAA.

The majority of rated series for first lift in the LAA are fair (75%) to good (5%). Black Chernozemic soils dominate the landscape in the LAA and the topsoil substrate is of fair to good suitability for reclamation (DVG, DVGca, FSH, FSHca, FSHgl, MSB, and SRCxg). Saturation percentage is not used for first lift calculation because the organic content of the topsoil is too elevated to properly analyze. Regosols (TBR, TBRgl) are also rated fair to good for first lift (Table 3-38). The 12% that are rated as poor (POT, SRCca and ZGC) is due to deductions for elevated calcium carbonate equivalent and for fine to very fine surface texture. The remaining 9% are not rated because it includes the organic surface horizon (TBRgr), and reclaimed and disturbed soils (Table 3-40).

For the second lift, most of the LAA—except for the portions not rated (5%) for reclaimed and disturbed soil units, and the medium to coarse-textured glaciofluvial units (SRCca, TBR and ZGC)—is rated as poor (81%) to unsuitable (4%). The most common limitations for the second lift are texture (fine to very fine glaciolacustrine and till soils), high coarse fragment content and saturation percent. This group comprises Chernozemic series soils (DVG, DVGca, FSH, FSHca, FSHgl, MSB, SRCxg), Regosolic series soils (TBRgl, TBRgr) and Gleysolic series soils (POT).

Figure 3-18 shows upper lift reclamation suitability ratings. The poorly rated soils densely populate the areas of the terraced floodplains near the Elbow River and the fluvial deposits of the tributaries that feed it.

Figure 3-19 shows lower lift reclamation suitability ratings, which is almost a reversal of the upper lift figure. The poorly rated soils are dominant and cover most of the LAA. Areas of good to fair rated soils are clustered along the Elbow River.

Soils March 2018

Soil Map Unit	Good %	Fair %	Poor %	Unsuitable %	N/A %	N/R %	Area of LAA (ha)	% of LAA
Units with fine to	o very fine-t	extured ti	ll and glac	iolacustrine pare	ent materia	als	1448.4	76.8
DVFS1	-	100.0	-	-	-	-	55.2	2.9
DVFS2	-	100.0	-	-	-	-	304.3	16.1
DVG1	-	100.0	-	-	-	-	281.5	14.9
FSH1	-	100.0	-	-	-	-	276.6	14.7
FSH2	-	100.0	-	-	-	-	437.2	23.2
POT1	-	-	100.0	-	-	-	30.0	1.6
POT2	-	20.0	80.0	-	-	-	20.5	1.1
POT6	-	50.0	50.0	-	-	-	43.1	2.3
Units with medi	um-textured	d fluvial pa	arent mate	rials			38.1	2.0
SRC1	-	-	100.0	-	-	-	35.8	1.9
SRC4	-	20.0	80.0	-	-	-	2.3	0.1
Units with mode parent material	-	se to very	coarse-te	extured fluvial and	d glacioflu	ıvial	172.1	9.1
TBR1	100.0	-	-	-	-	-	6.4	0.3
TBR2	80.0	20.0	-	-	-	-	50.7	2.7
TBR4	80.0	-	-	-	-	20.0	11.4	0.6
TBRgr1	-	-	-	-	-	100.0	61.9	3.3
TBRgr2	-	-	20.0	-	-	80.0	6.8	0.4
ZGC1	-	-	100.0	-	-	-	35.0	1.9
Undifferentiated	d, transitiona	al areas					129.7	6.9
POT7	-	20.0	80.0	-	-	-	81.7	4.3
TBR6	80.0	20.0	-	-	-	-	15.1	0.8
TBSR1	50.0	-	50.0	-	-	-	30.0	1.6
MSTB1	50.0	50.0	-	-	-	-	2.8	0.2
Other units							98.2	5.2
ZDL	-	-	-	-	100.0	-	97.1	5.1
ZREC	-	100.0	-	-	-	-	1.1	0.1
Total							1886.5	100.0

Table 3-38 Reclamation Suitability Ratings for First Lift of Map Units in the LAA

NOTES:

Areas and proportions will not sum exactly to totals because of rounding

N/A = Not applicable

N/R = Not rated

Soils March 2018

Soil Map Unit	Good %	Fair %	Poor %	Unsuitable %	N/A %	N/R %	Area of LAA (ha)	% of LAA
Units with fine to	o very fine-t	extured ti	ll and glac	iolacustrine pare	ent materia	als	1448.4	76.8
DVFS1			100.0				55.2	2.9
DVFS2			100.0				304.3	16.1
DVG1			100.0				281.5	14.9
FSH1			100.0				276.6	14.7
FSH2			100.0				437.2	23.2
POT1			100.0				30.0	1.6
POT2			100.0				20.5	1.1
POT6			100.0				43.1	2.3
Units with medi	um-textured	d fluvial pa	arent mate	erials			38.1	2.0
SRC1		100.0					35.8	1.9
SRC4		80.0	20.0				2.3	0.1
Units with mode parent materia		se to very	coarse-te	extured fluvial and	d glacioflu	ivial	172.1	9.1
TBR1	100.0						6.4	0.3
TBR2	80.0		20.0				50.7	2.7
TBR4	80.0			20.0			11.4	0.6
TBRgr1				100.0			61.9	3.3
TBRgr2		20.0		80.0			6.8	0.4
ZGC1		100.0					35.0	1.9
Undifferentiate	d, transitiona	al areas					129.7	6.9
POT7		20.0	80.0				81.7	4.3
TBR6	80.0		20.0				15.1	0.8
TBSR1	50.0	50.0					30.0	1.6
MSTB1	50.0			50.0			2.8	0.2
Other units							98.2	5.2
ZDL					100.0		97.1	5.1
ZREC			100.0				1.1	0.1
							1886.5	100.0

Table 3-39 Reclamation Suitability Ratings for Second Lift of Map Units in the LAA

N/A = Not applicable

N/R = Not rated

Soils March 2018

Table 3-40 First Lift Reclamation Suitability Ratings in the LAA

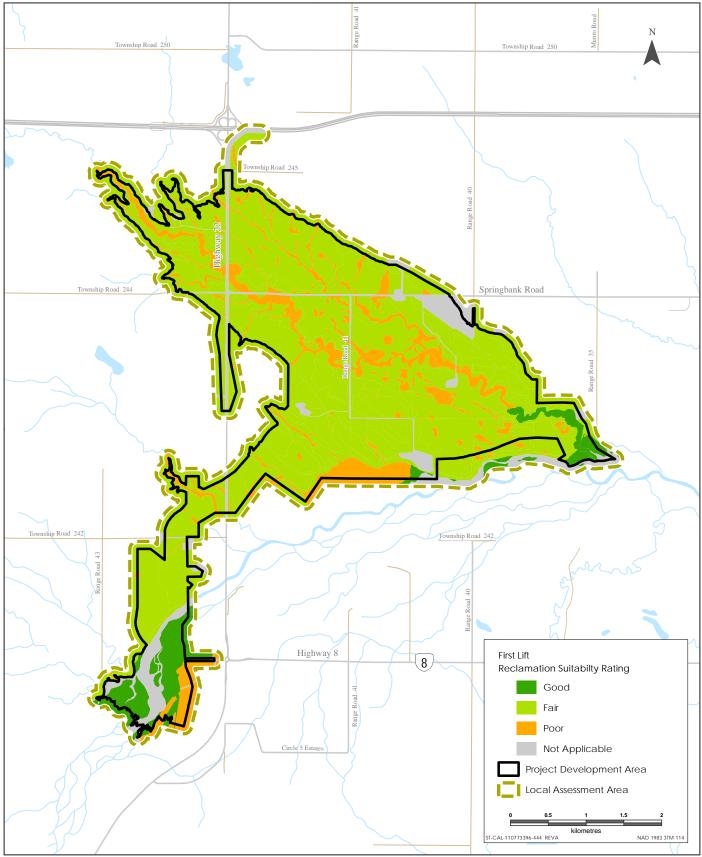
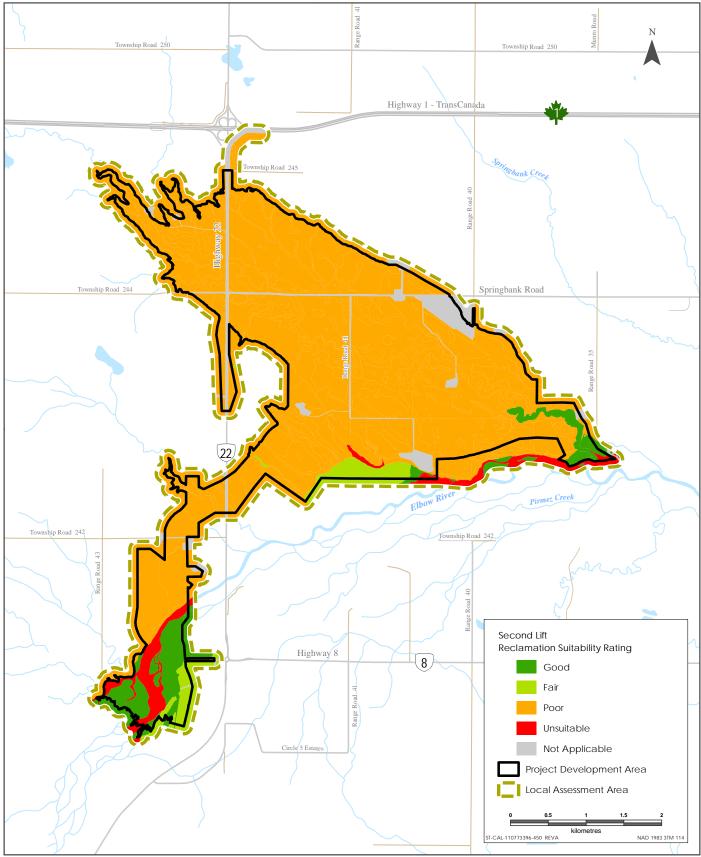

Reclamation Suitability Rating	Areal Extent in LAA (ha)	% of LAA
Good	84.6	4.5
Fair	1412.9	74.9
Poor	222.3	11.8
Unsuitable	-	-
Not Applicable	97.1	5.1
Not Rated	69.5	3.7
Total	1886.5	100.0
NOTE:		
Areas and proportions might not add up t	o totals because of rounding	

Table 3-41 Second Lift Reclamation Suitability Ratings in the LAA


Reclamation Suitability Rating	Areal Extent in LAA (ha)	% of LAA
Good	84.6	4.5
Fair	105.4	5.6
Poor	1528.5	81.0
Unsuitable	71.0	3.8
Not applicable	97.1	5.1
Not rated	-	-
Total	1886.5	100.0
NOTE:		

Areas and proportions might not add up to totals because of rounding

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Sources: Base Data - Government of Alberta, Government of Canada, Thematic Data - Stantec Ltd.

Soils March 2018

3.3 SOILS SUMMARY

3.3.1 LAA

Soil mapping in the LAA identified the dominant parent material (77% of LAA) to be fine to very fine-textured glaciolacustrine and till deposits. The most common soil orders are Chernozems and Gleysols of the Dunvargan, Fish Creek and Pothole Creek soil series. Soil drainage for these series ranged from well to poor and slope classes ranged from 1 to 8 (0% to 70%).

The second most common parent material (9% of LAA) is moderately coarse to very-coarse textured glaciofluvial and fluvial parent materials, which are located along the Elbow River and in former meltwater channels. The dominant soils for this texture class are Regosols and Gleysols of the Twin Bridges and Gleysol Coarse soil series. The drainage ranged from rapid to poor and the terrain is level to moderately sloping (0% to 30% slope).

Complex parent material units that include a combination of fine to very fine-textured till, colluvial deposits over residuum (sandstone and shale) and medium to very-coarse textured fluvial or glaciofluvial material occupy approximately 11% of the LAA. The soils in this texture group are mainly Regosols, Gleysols and weakly developed Chernozems. The drainage for this group ranges from rapid to poor and the terrain is nearly level to steeply sloping (0% to 45% slope).

Soils developed on medium -textured fluvial materials covered approximately 2% of the LAA and were predominantly Chernozems. The Sarcee soil series best represent this map unit. These units occurred along terraced floodplains on gentle terrain (0% to 2% slope) and are typically well drained.

The remaining units (reclaimed soil and disturbed land) covered 5% of the LAA.

Agricultural land capability in the LAA is primarily Class 3 (76%) and the primary restriction is climate. Other classes are 4 through 7, and the limiting factors included poor drainage, topography, stoniness, shallow depth to bedrock, moisture holding capacity and subsoil structure (shallow to an impeding soil layer. LAA soils typically had fair reclamation suitability for the first lift and poor reclamation suitability for the second lift.

Water erosion risk is primarily very low (60% of LAA) with the remaining area rated as moderate to severe. Wind erosion risk is mainly low for topsoil and moderate for subsoil. Compaction ratings are dominantly moderate to high for topsoil and subsoil in across the LAA due to low relief and high clay contents. Rutting risk is mainly low to moderate depending on soil moisture, organic content and slope factors.

References March 2018

4.0 **REFERENCES**

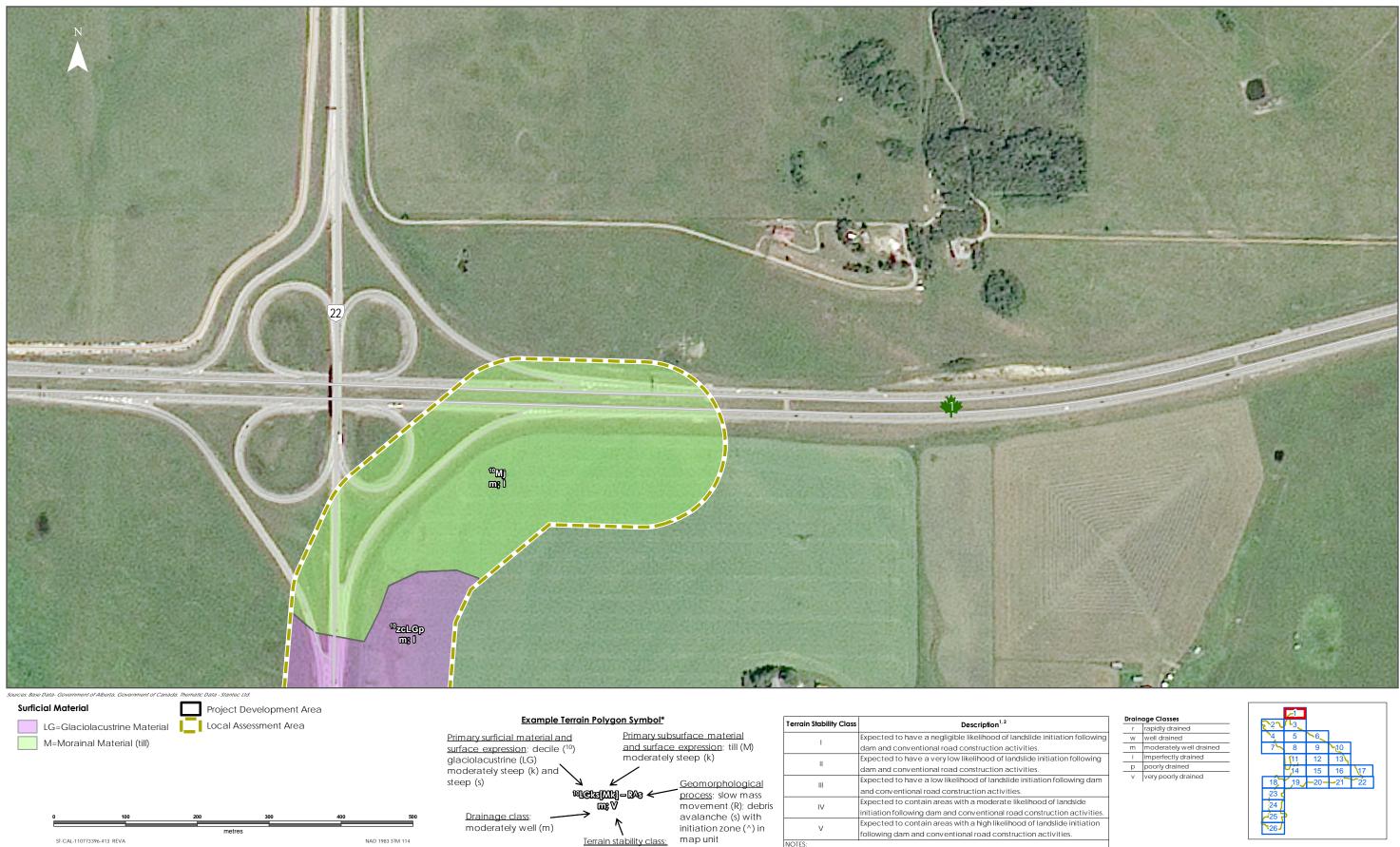
- AAFRD (Alberta Agriculture Food and Rural Development). 1987. Soil Quality Criteria Relative to Disturbance and Reclamation. Edmonton, Alberta.
- AFPA/LFS (Alberta Forest Products Association/Land and Forest Service). 1996. Forest Soils Conservation. Alberta Forest Products Association/Land & Forest Service Task Force Report.
- Agriculture and Agri-Food Canada. 1995. Land Suitability Rating System for Agricultural Crops: 1. Spring- seeded small grains. W.W. Pettapiece (ed.). Tech. Bull. 1995-6E. Agronomic Interpretations Working Group, Centre for Land and Biological Resources Research, Agriculture and Agri-Food Canada, Ottawa, Ontario.
- ASIC (Alberta Soil Information Centre). 2001. AGRASID 3.0: Agricultural Region of Alberta Soil Inventory Database (Version 3). (ed.) J.A. Brierley, T.C. Martin and D.J. Spiess. Agriculture and Agri-Food Canada, Research Branch; Alberta Agriculture, Food and Rural Development, Conservation and Development Branch. Archibald, D.J., W.B. Wiltshire, D.M. Morris and B.D. Batchelor. 1997. Forest Management Guidelines for the Protection of the Physical Environment. Version 1. Report MNR 51032. Ontario Ministry of Natural Resources. Queen's Printer for Ontario. Toronto, Ontario.
- BCMOF (BC Ministry of Forests). 1999. Hazard Assessment Keys for Evaluating Site Sensitivity to Soil Degrading Processes Guidebook. Second Edition. Version 2.1. Forest Practices Code of British Columbia. Victoria, BC.
- BCMOF and BCMOE (BC Ministry of Forests and BC Ministry of Environment). 1999. *Mapping and Assessing Terrain Stability Guidebook*. 2nd edition. Forest Practices Code of British Columbia. Victoria, BC.
- Bock, M.D., J.A. Brierley, B.D. Walker, C.J. Thomas and P.E. Smith. (eds.). 2006. Alberta Soil Names File (Generation 3) User's Handbook. Land Resource Unit, Research Branch, Agriculture and Agri-Food Canada. Available at: http://www.agric.gov.ab.ca/asic. Accessed: January 2017.
- Cannon, K.R. and S. Landsburg, 1990. Topsoil Stripping in Potentially Arable Forested Luvisols: A Literature Review. AGTD Environmental Research Monographs 1990-2. NOVA Corporation of Alberta. Calgary, Alberta. 38 p. Carter, M.R (ed.). 1993. Soil Sampling and Methods of Analysis. Lewis Publications. Boca Raton, Florida.

Carter, M.R. and E.G. Gregorich, 2008. Soil Sampling and Methods of Analysis, Second Edition. Prepared for the Canadian Society of Soil Science. Boca Raton, Florida.

References March 2018

- Chatwin, S.C., D.E. Howes, J.W. Schwab, and D.N. Swanston. 1994. A Guide for Management of Landslide-Prone Terrain in the Pacific Northwest, Second Edition. BC Ministry of Forests, Research Program. Land Management Handbook Number 18.
- Coote, D.R. and W.W. Pettapiece. 1989. *Wind Erosion Risk Alberta*. Canada–Alberta Soil Inventory, Land Resource Research Centre, Research Branch, Agriculture Canada.
- Environment and Climate Change Canada. Canadian Climate Normals 1981-2010. Available at: http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed: January 2017.
- Expert Committee on Soil Survey. 1983. Canada Soil Information System (CanSIS) Manual for Describing Soils in the Field 1982 Revised. J.H. Day (ed.). LRRI Contribution Number 82.52.
- Howes, D.E. and E. Kenk. 1997. Terrain Classification System for British Columbia, Version 2. Ministry of Environment and Ministry of Crown Lands Province of British Columbia MOE Manual 10.
- Jackson, L. E. Jr., 1980, Glacial history and stratigraphy of the Alberta portion of the Kananaskis Lakes map area: Canadian Journal of Earth Sciences, v. 17, p. 459–477.
- MacMillan, R.A. 1987. Soil Survey of the Calgary urban perimeter. Alberta Soil Survey Report No. 45. Terrain Sciences Department, Alberta Research Council.
- Mapping System Working Group 1981. A Soil Mapping System for Canada: revised. Land Resource Research Institute, Contribution No. 142. Ottawa: Agriculture Canada.
- McKeague, J.A. (ed.). 1978. Manual on Soil Sampling and Methods of Analysis, 2nd Edition. Prepared by Subcommittee of Canada Soil Survey Committee on Methods of Analysis. Canadian Society of Soil Science. Ottawa, Ontario.
- Moran, S.R. 1986. Surficial Geology of the Calgary Urban Area. Bulletin No. 53. Terrain Sciences Department, Alberta Research Council, Edmonton, Alberta, Canada.
- Natural Regions Committee. 2006. Natural Regions and Subregions of Alberta. Compiled by D.J. Downing and W.W. Pettapiece. Government of Alberta. Pub. No. T/852.Coote.
- Pettapiece, W.W. 1986. Physiographic Subdivisions of Alberta. Ottawa: Land Resource Centre, Research Branch. 1:1,500,000.
- Prior, G.J., Hathway, B., Glombick, P.M., Pană, D.I., Banks, C.J., Hay, D.C., Schneider, C.L., Grobe, M., Elgr, R. and Weiss, J.A. 2013. Bedrock geology of Alberta. Alberta
- Resources Inventory Committee. 1996. Guidelines and Standards to Terrain Mapping in British Columbia. Surficial Geology Task Group, Earth Sciences

References March 2018


- SCWG (Soil Classification Working Group). 1998. The Canadian System of Soil Classification. Research Branch, Agriculture and Agri-Food Canada Publication 1646. 3rd edition (revised). National Research Council of Canada. 187 p.
- Wall G.J., D.R. Coote, E.A. Pringle and I.J. Shelton (eds.). 2002. RUSLEFAC. Revised Universal Soil Loss Equation for Application in Canada. A Handbook for Estimating Soil Loss from Water Erosion in Canada. Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario. Contribution Number 02-92. 117 p.

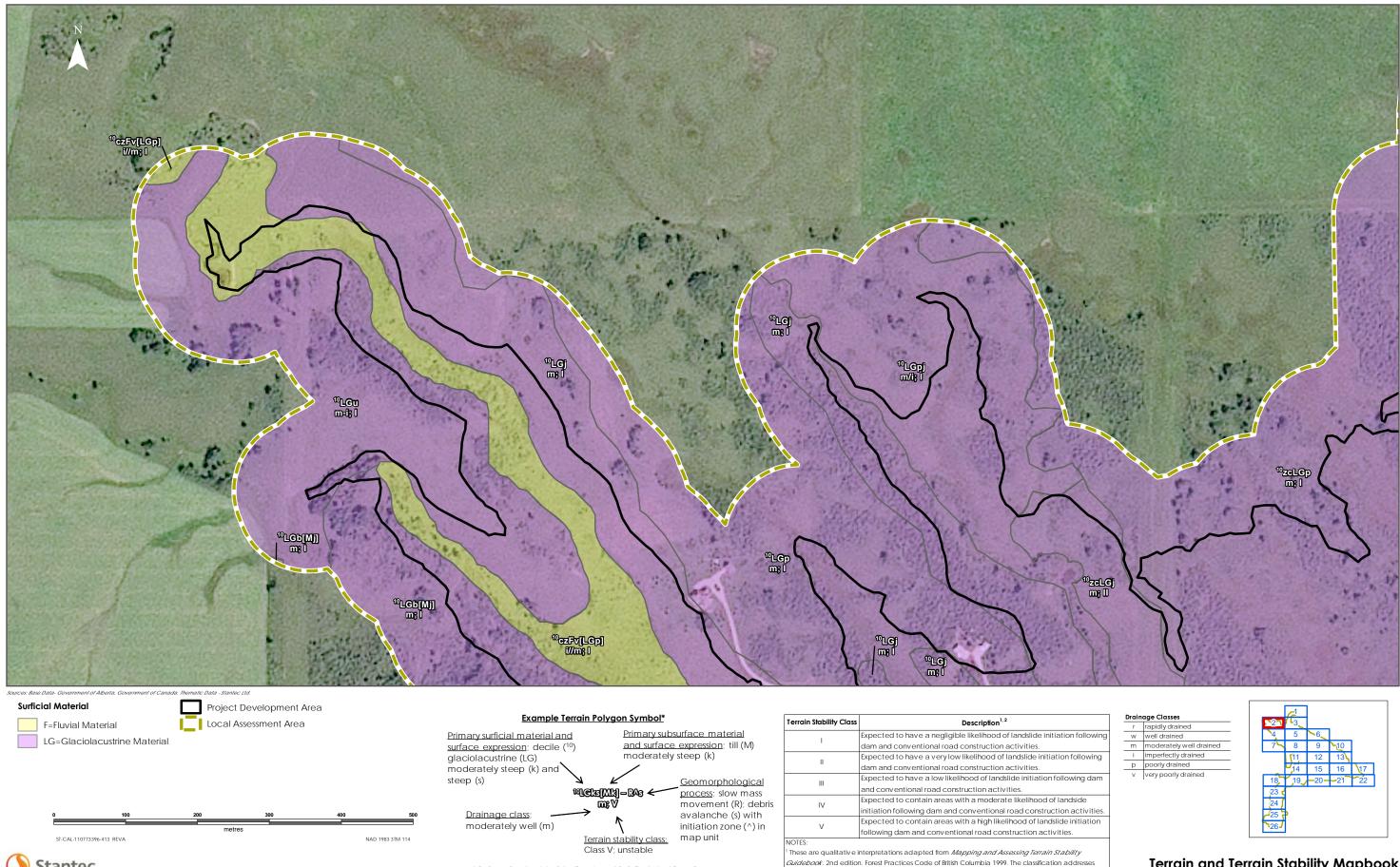
Attachment A Terrain Map Book March 2018

Attachment A TERRAIN MAP BOOK

NOTES: These are qualitative interpretations adapted from *Mapping and Assessing Terrain Stability* Guidebook. 2nd edition. Forest Practices Code of British Columbia 1999. The classification addresses andslides greater than 0.05 ha in size and applies to conventional forest clearing practices and nv entional cut and fill resource road construction.

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT


Stantec

* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

Class V; unstable

	r	rapidly drained
Ì	W	well drained
Ì	m	moderately well drained
Ì	i	imperfectly drained
	р	poorly drained
	v	very poorly drained

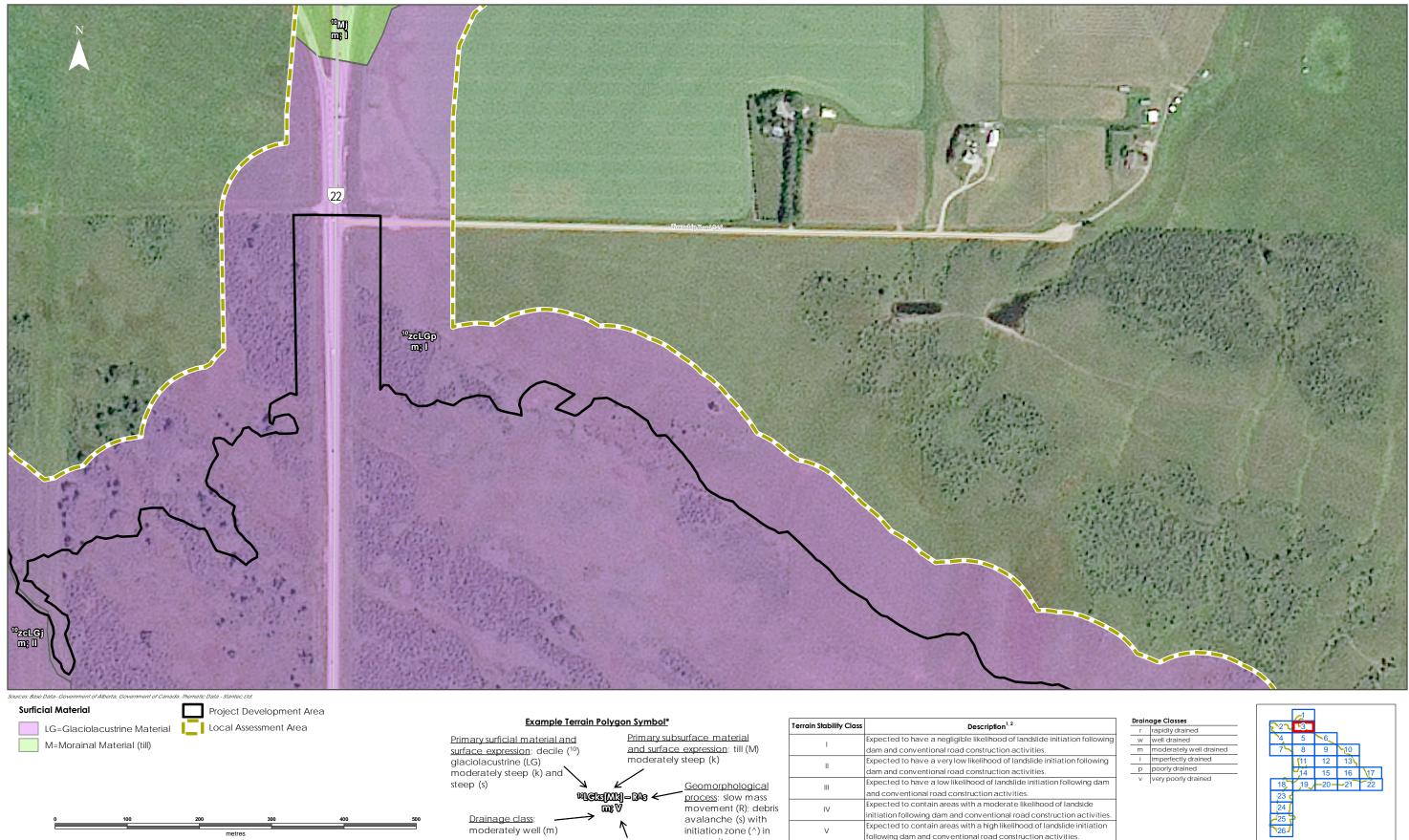
Terrain and Terrain Stability Mapbook

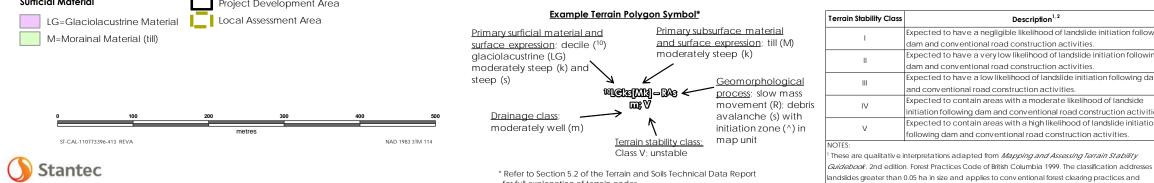
Stantec

ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

> Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.


nventional cut and fill resource road construction.


on	follo	wing

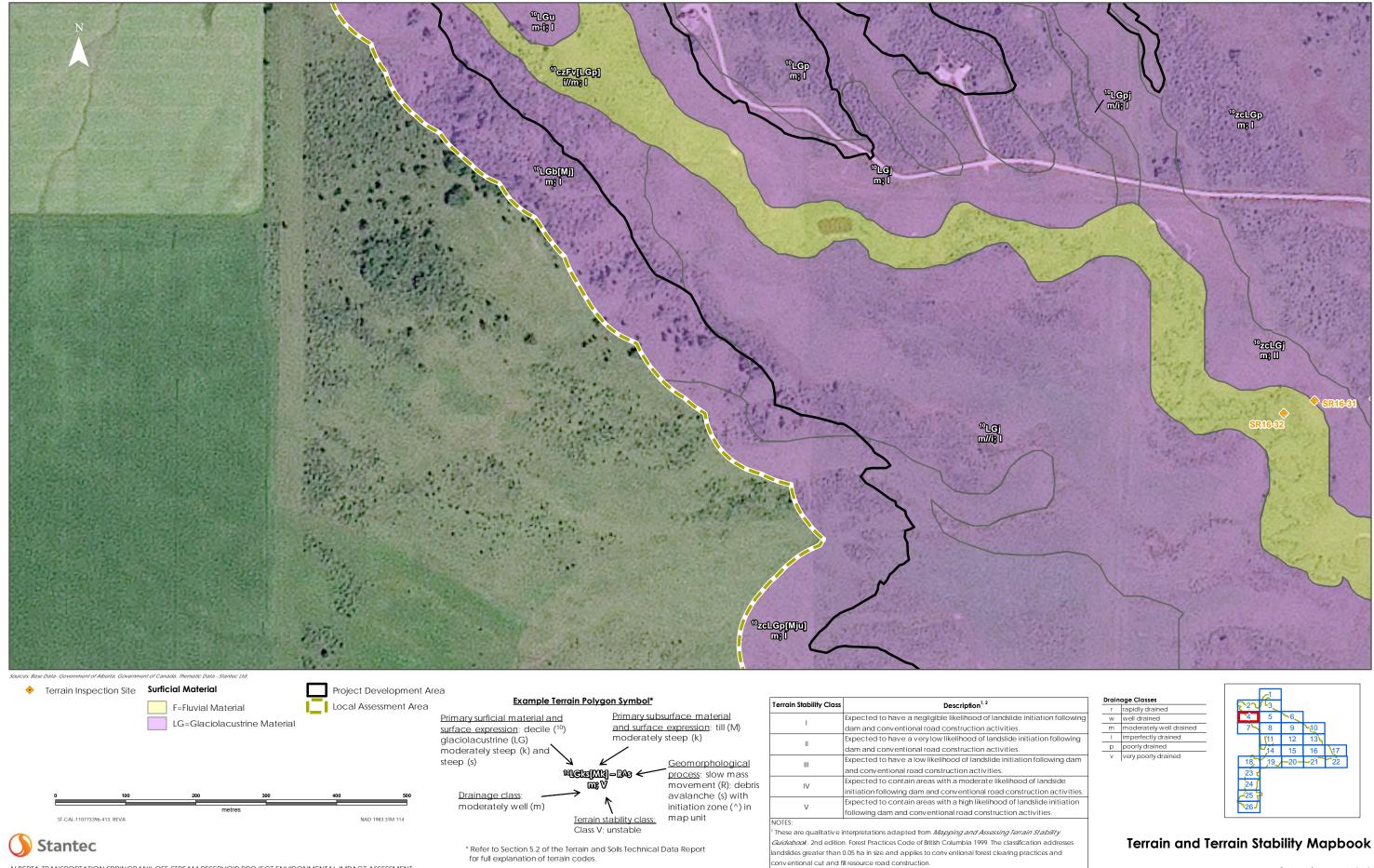
andslides greater than 0.05 ha in size and applies to conventional forest clearing practices and

г	r rapidly drained	
w well drained		
m	moderately well drained	
i	imperfectly drained	
р	poorly drained	
v	very poorly drained	

Terrain and Terrain Stability Mapbook

* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

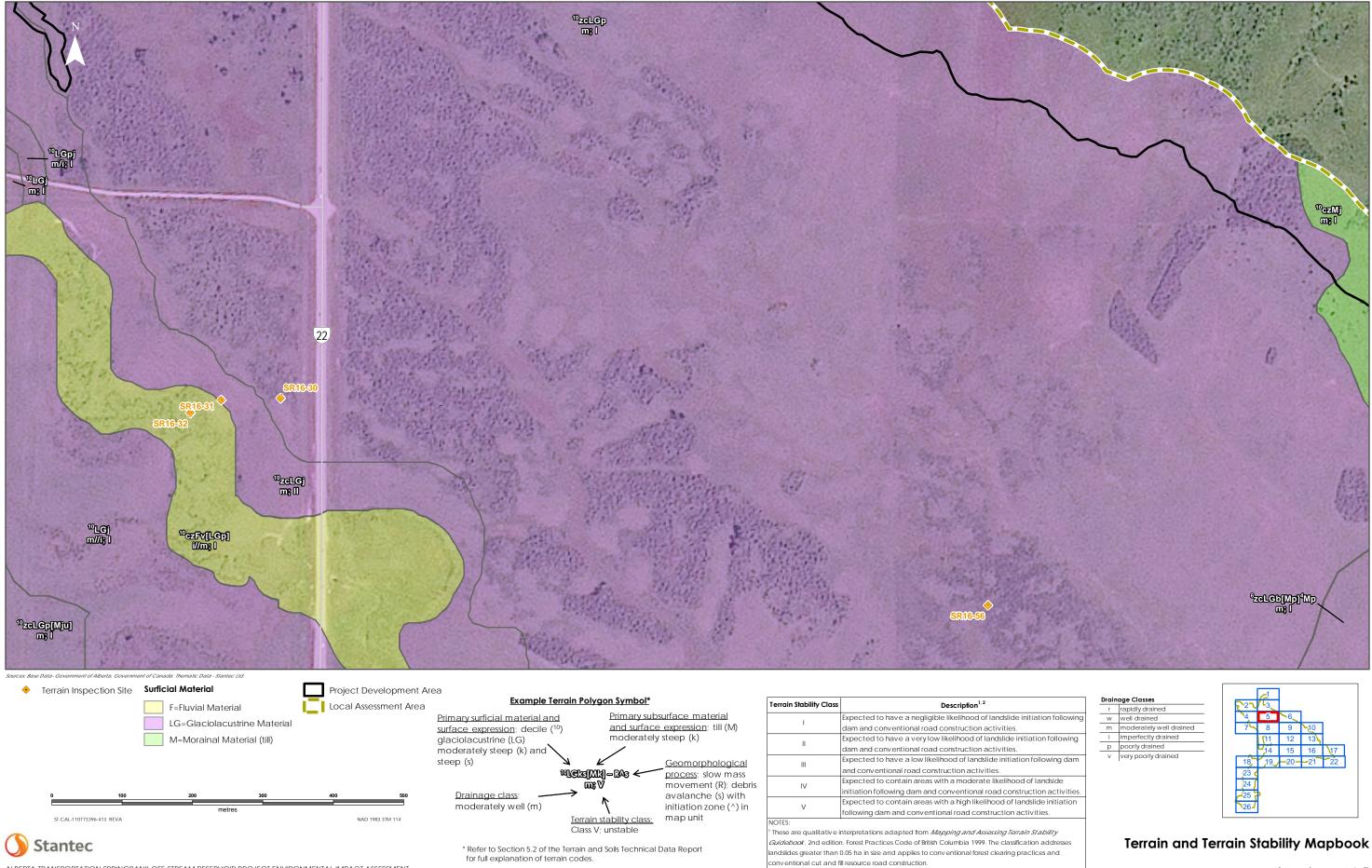

nventional cut and fill resource road construction.

ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

on followin	g

г	rapidly drained		
w well drained			
m	moderately well drained		
i	imperfectly drained		
р	poorly drained		
V	very poorly drained		

Terrain and Terrain Stability Mapbook

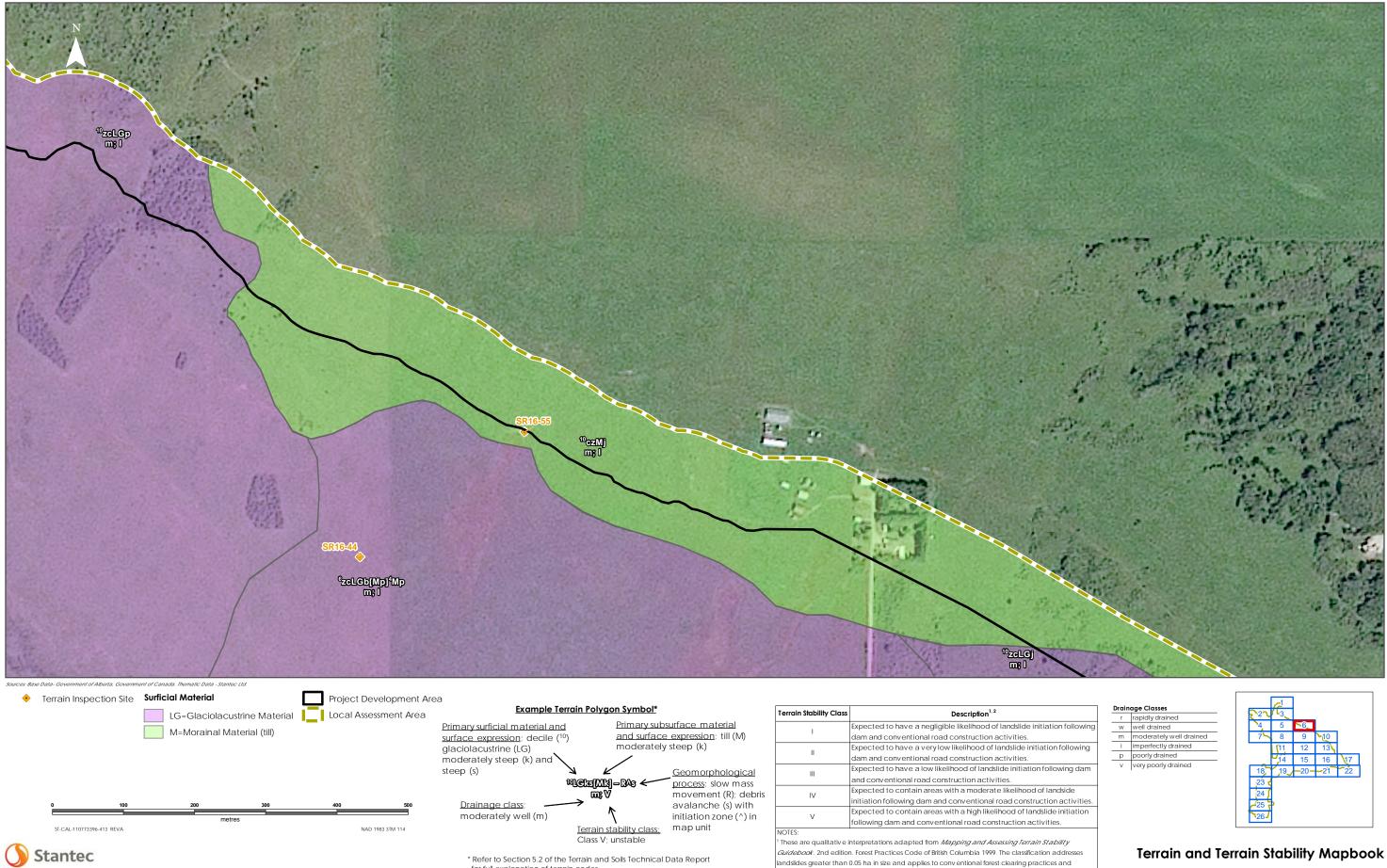


ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

on following	

Г	rapidly drained	
W	w well drained	
m moderately well drained		
i	imperfectly drained	
р	poorly drained	
v	very poorly drained	

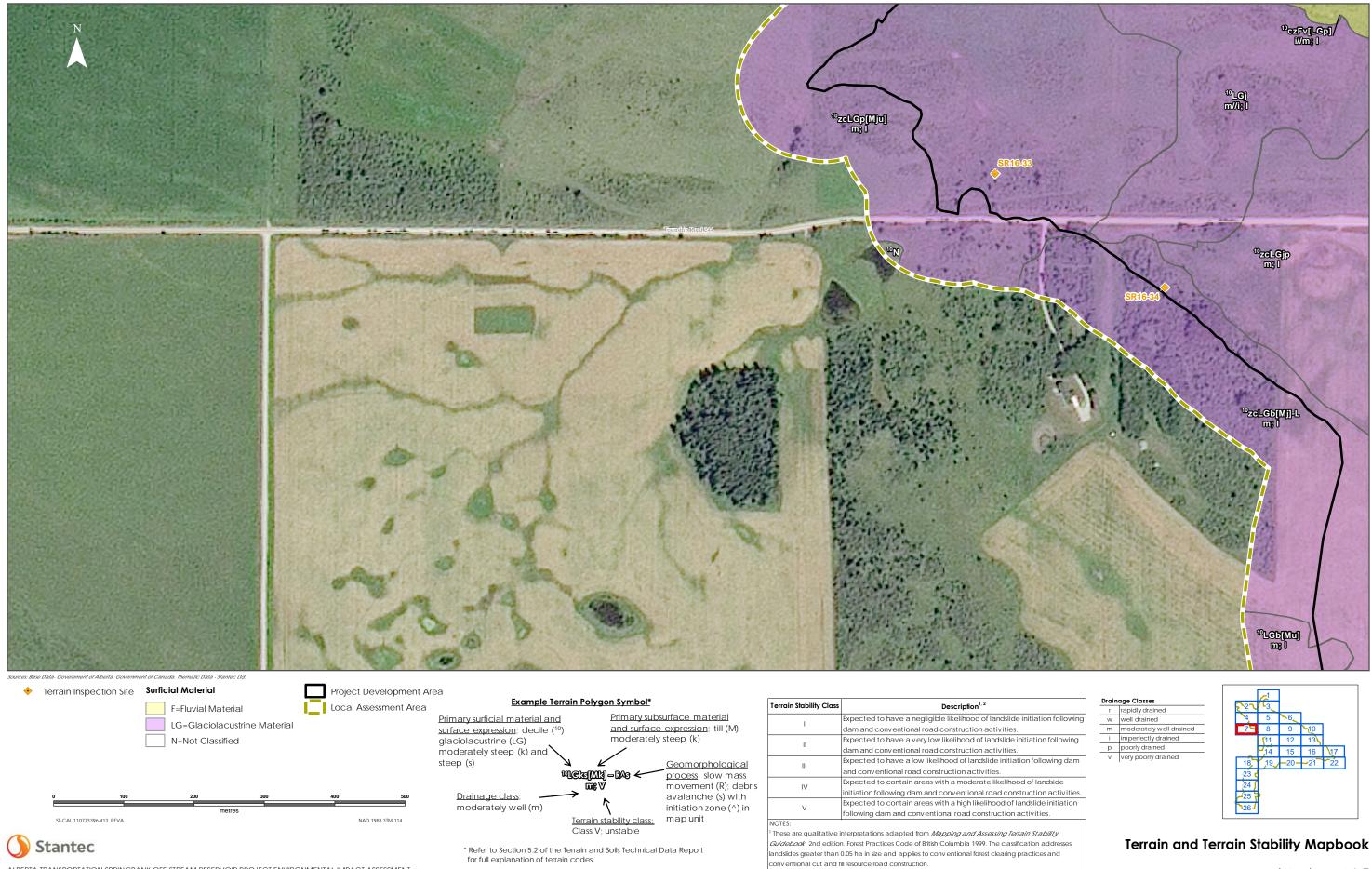


ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

for full explanation of terrain codes.

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

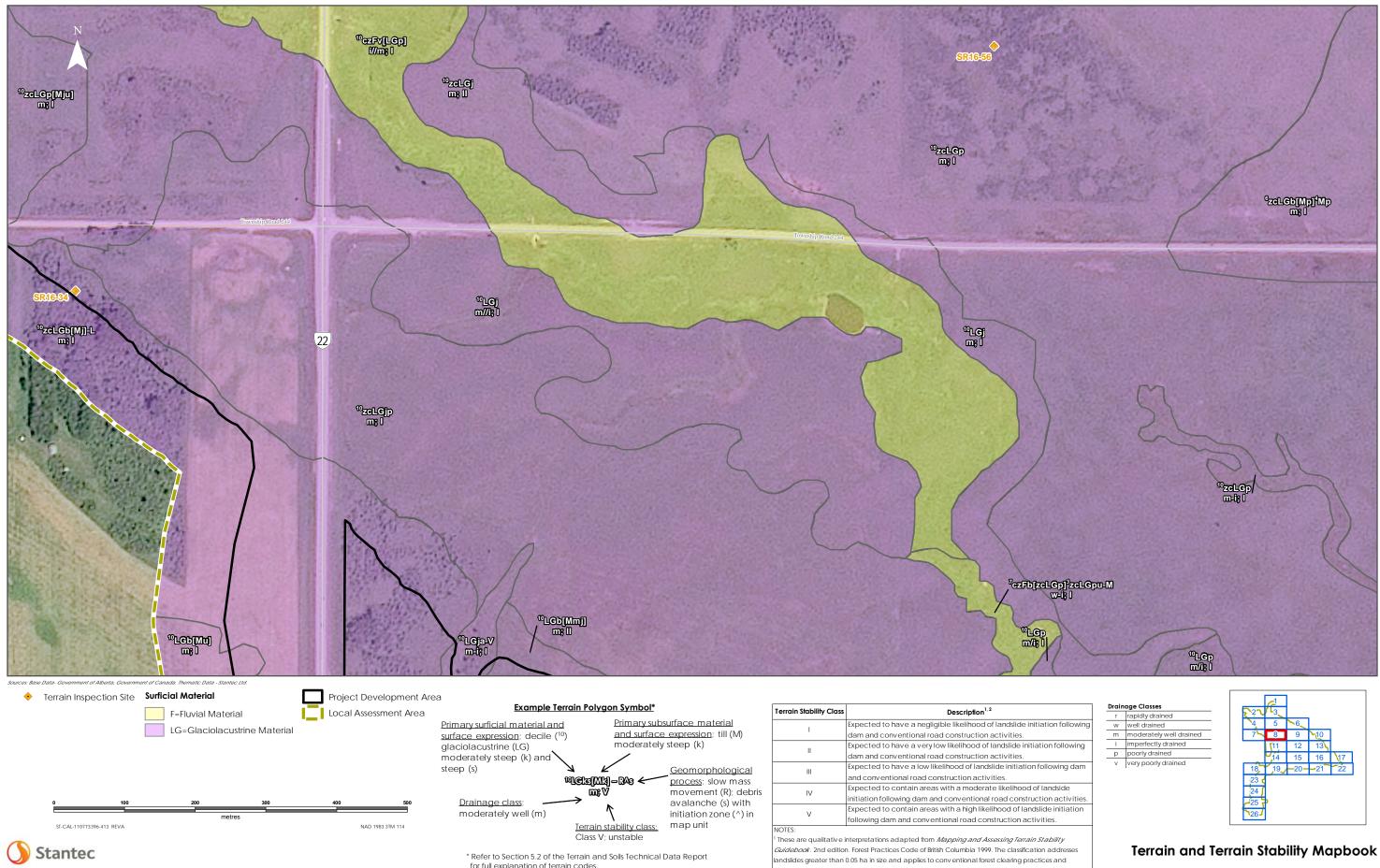
w well drained		well drained	
	m	moderately well drained	
	i	imperfectly drained	
	р	poorly drained	
	v	very poorly drained	



ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

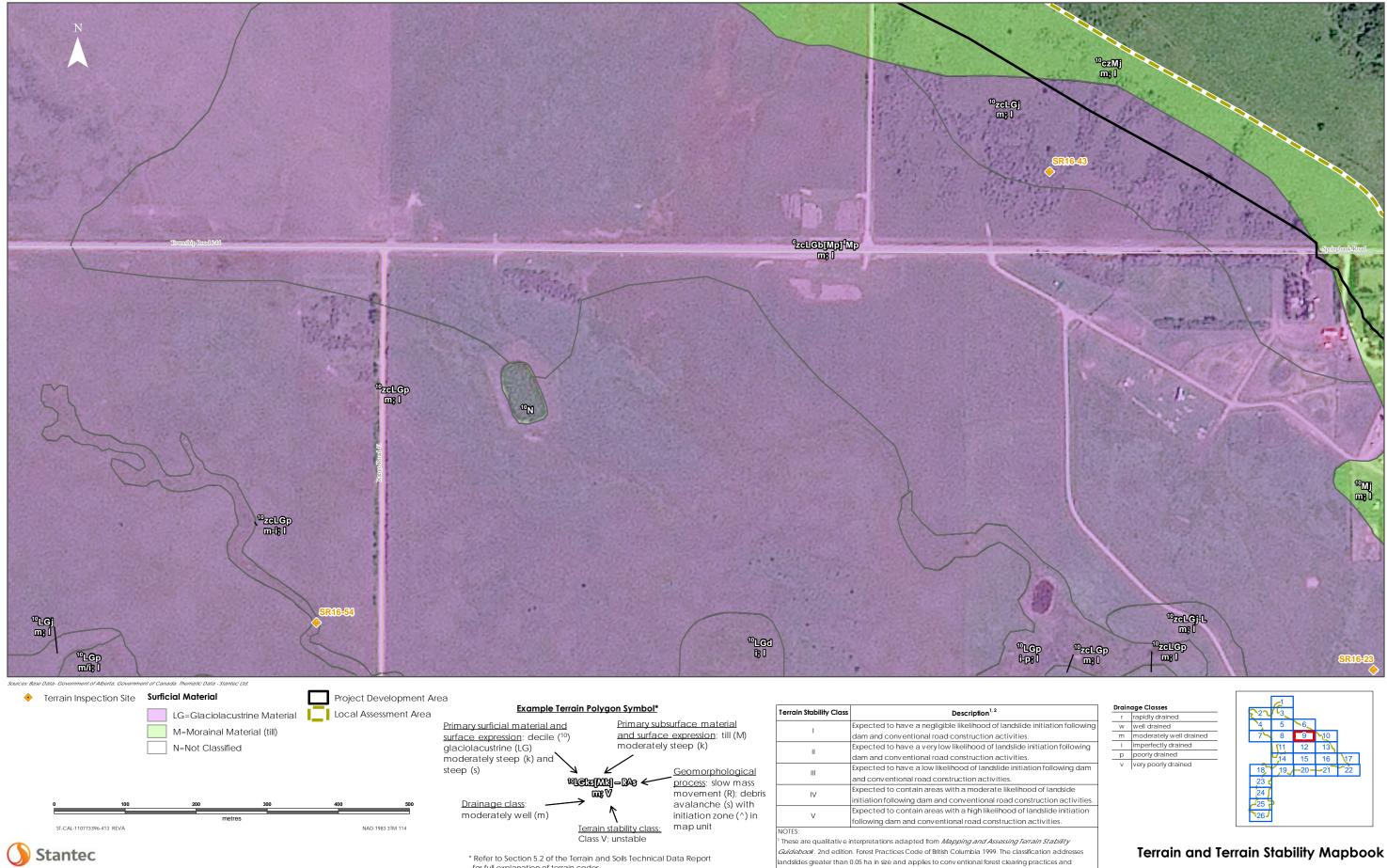
* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

nventional cut and fill resource road construction. Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.


г	rapidly drained	
w well drained		
m moderately well drained		
i	imperfectly drained	
р	poorly drained	
V	very poorly drained	

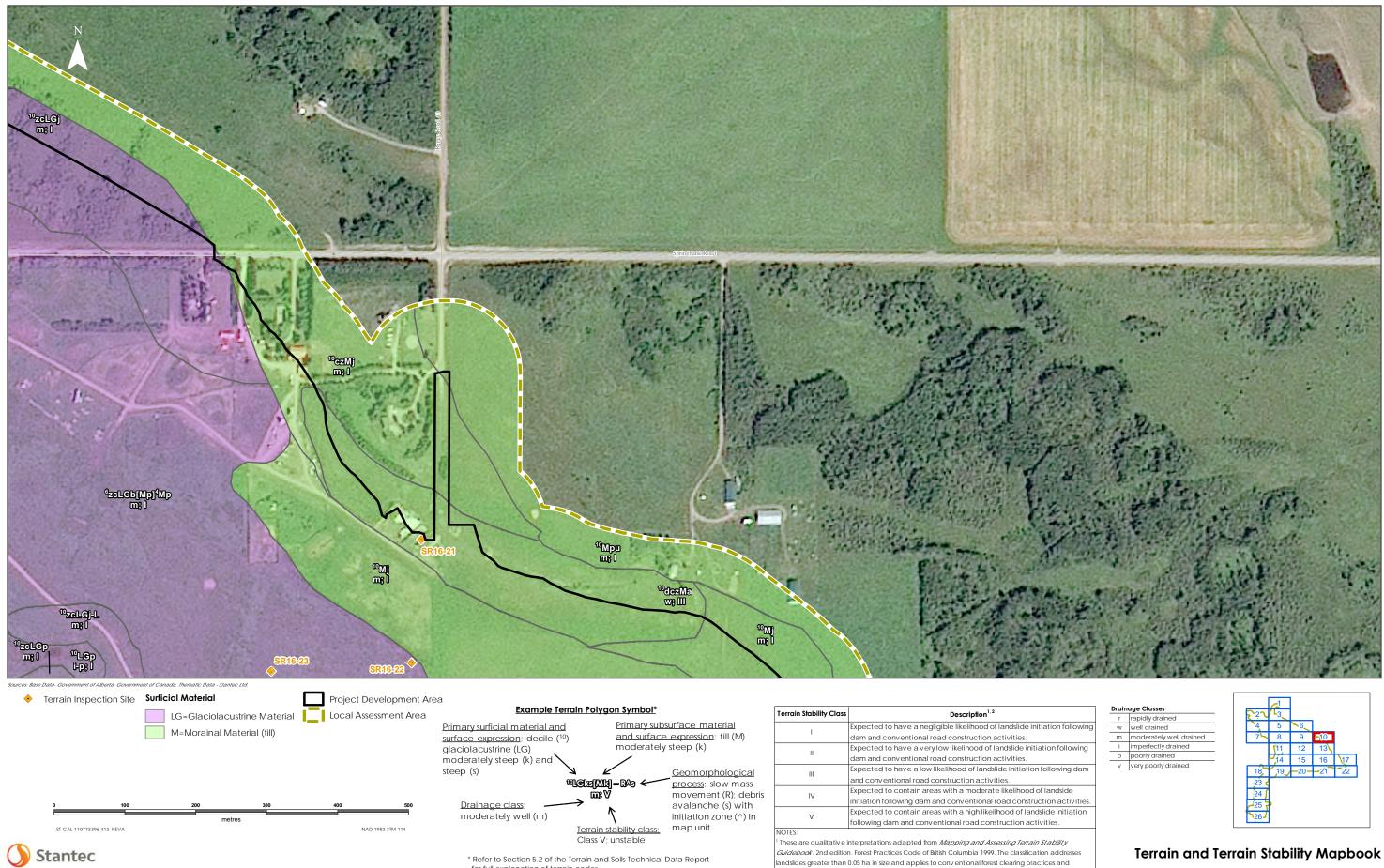
Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

on following


г	rapidly drained
W	well drained
m	moderately well drained
i	imperfectly drained
р	poorly drained
v	very poorly drained

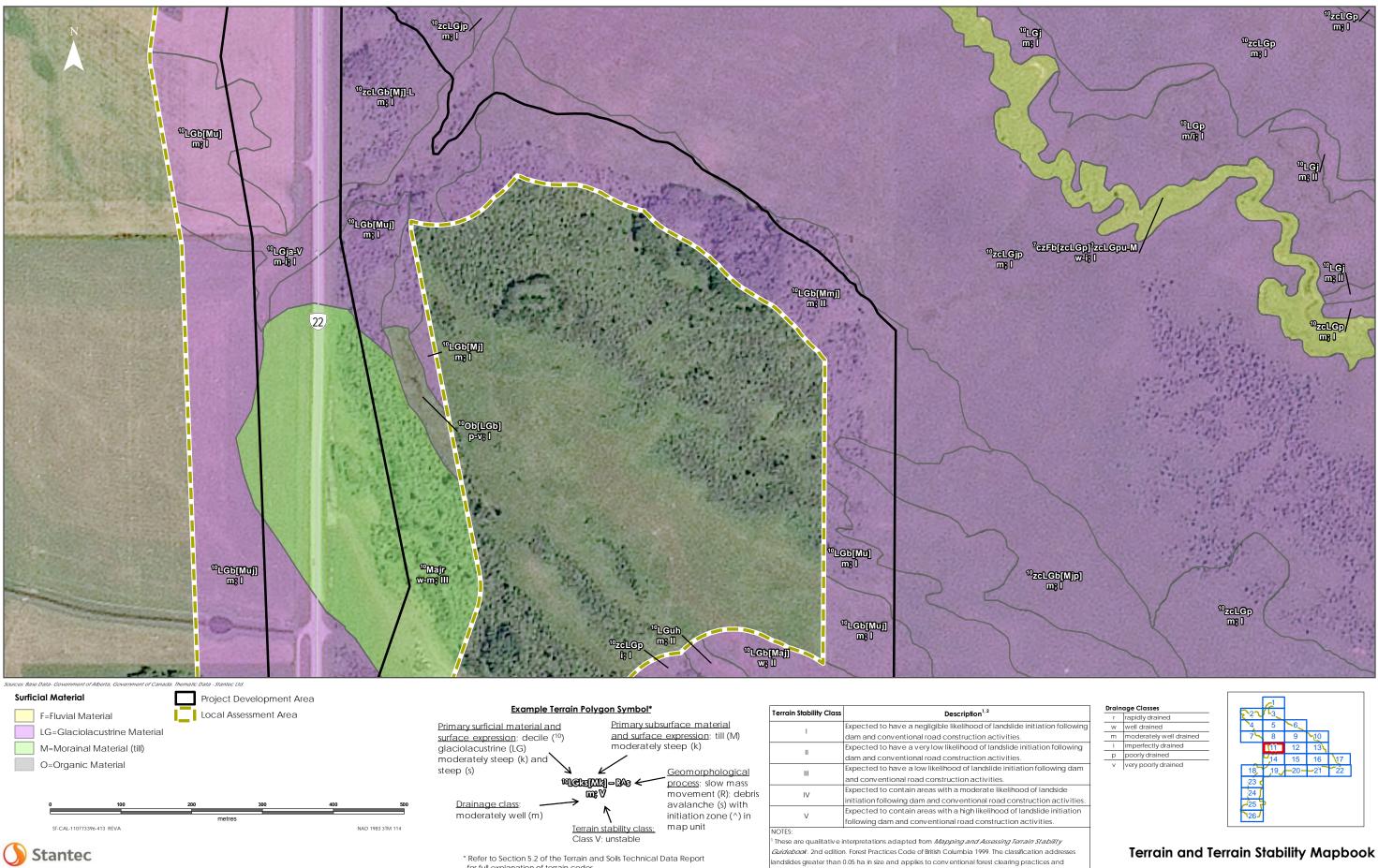
for full explanation of terrain codes.

nv entional cut and fill resource road construction Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.


	imponoonj aramoa
р	poorly drained
V	very poorly drained

for full explanation of terrain codes.

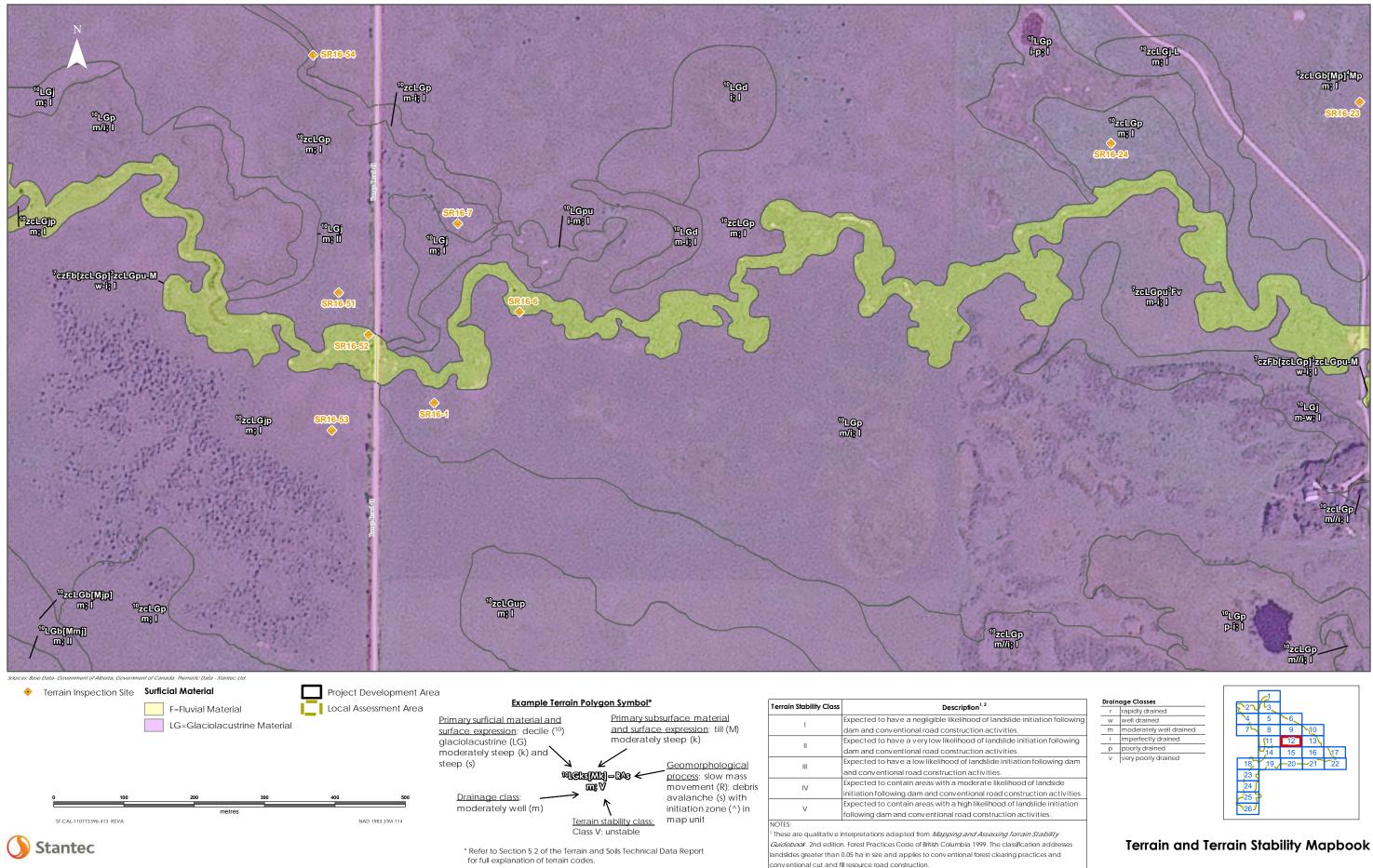
Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.


nventional cut and fill resource road construction.

* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

nventional cut and fill resource road construction. Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

г	rapidly drained	
W	well drained	
m	moderately well drained	
i	imperfectly drained	
р	poorly drained	
v	very poorly drained	

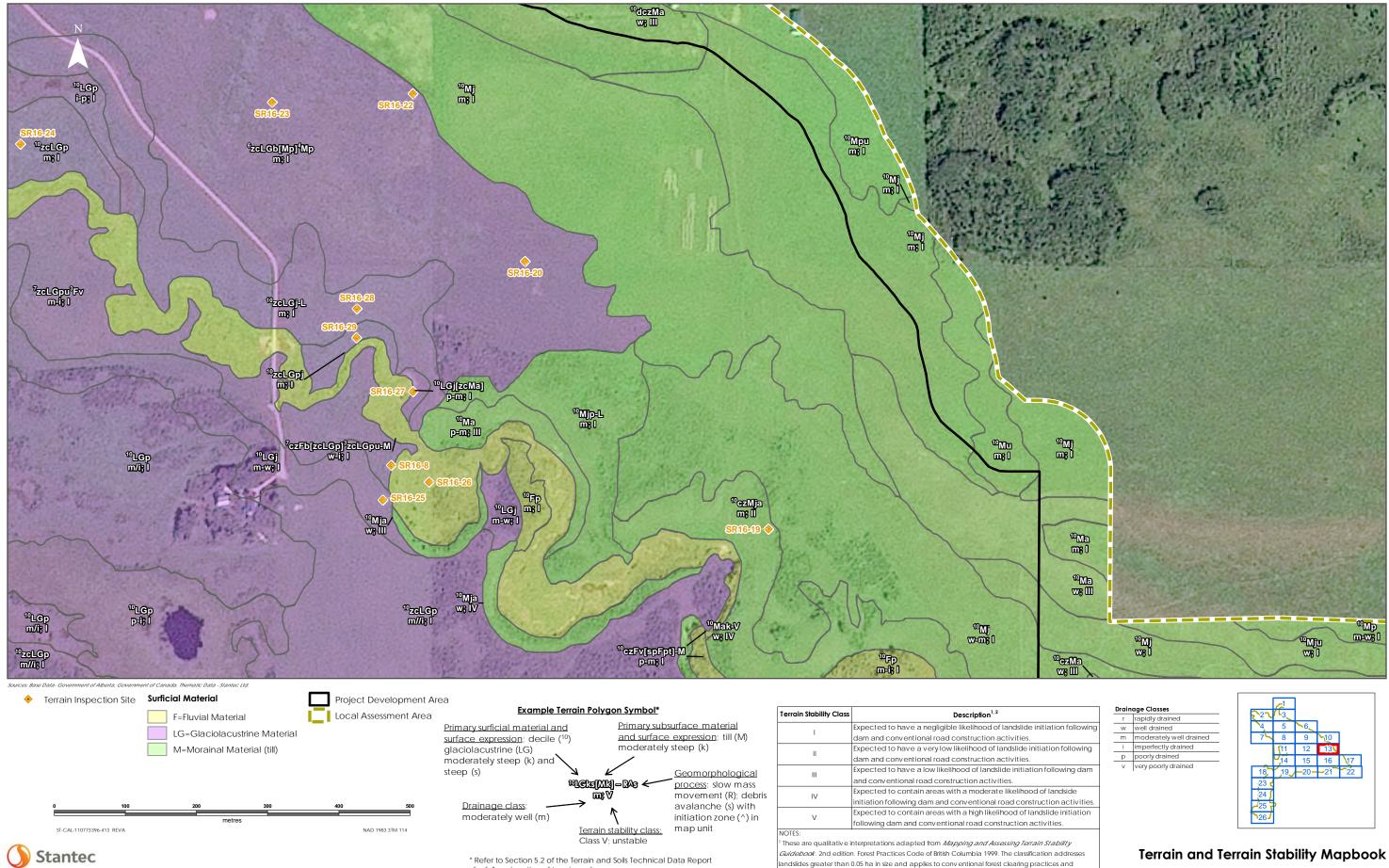

for full explanation of terrain codes.

ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

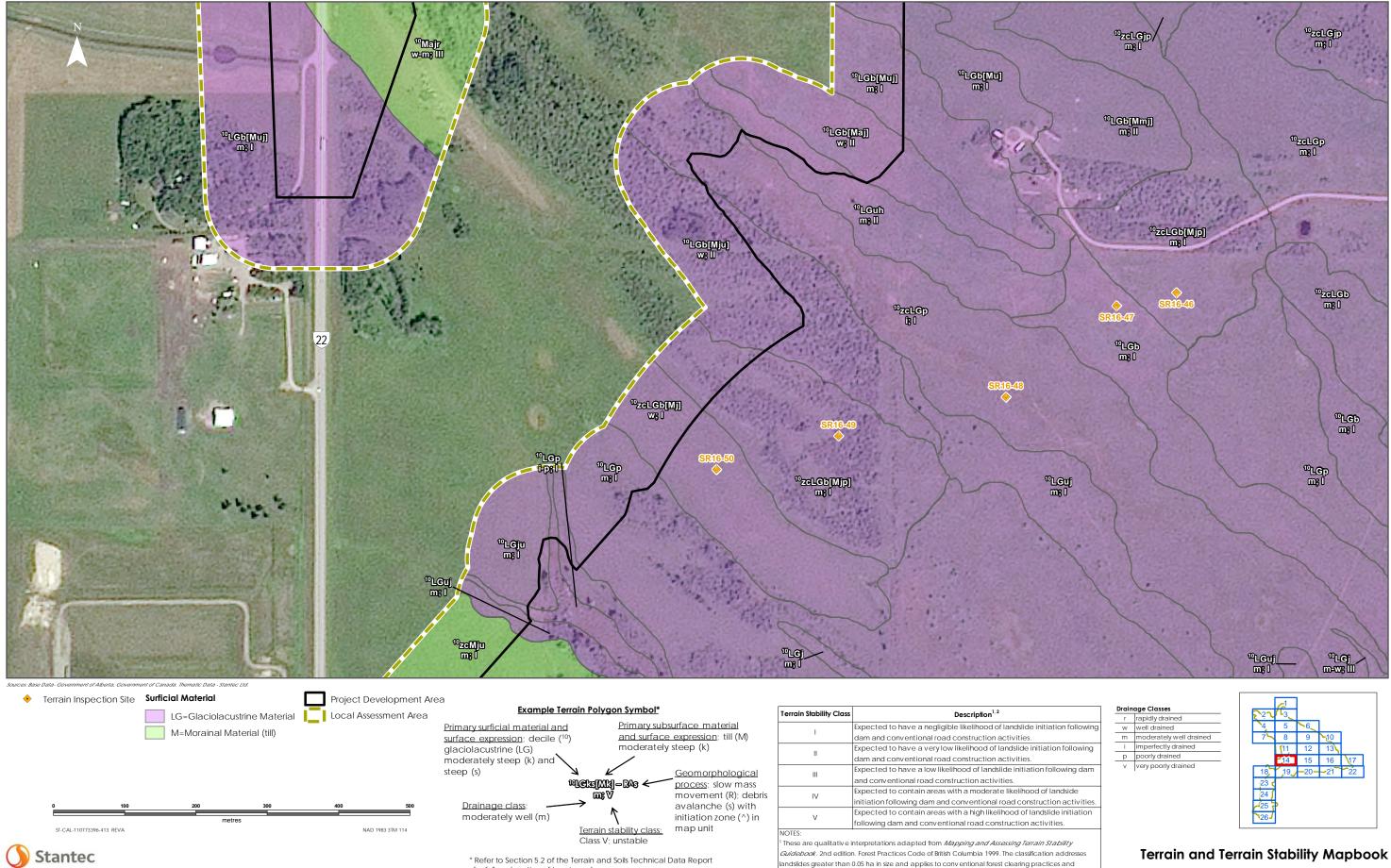
nv entional cut and fill resource road construction

г	rapidly drained
W	well drained
m	moderately well drained
i	imperfectly drained
р	poorly drained
V	very poorly drained
	•



for full explanation of terrain codes.

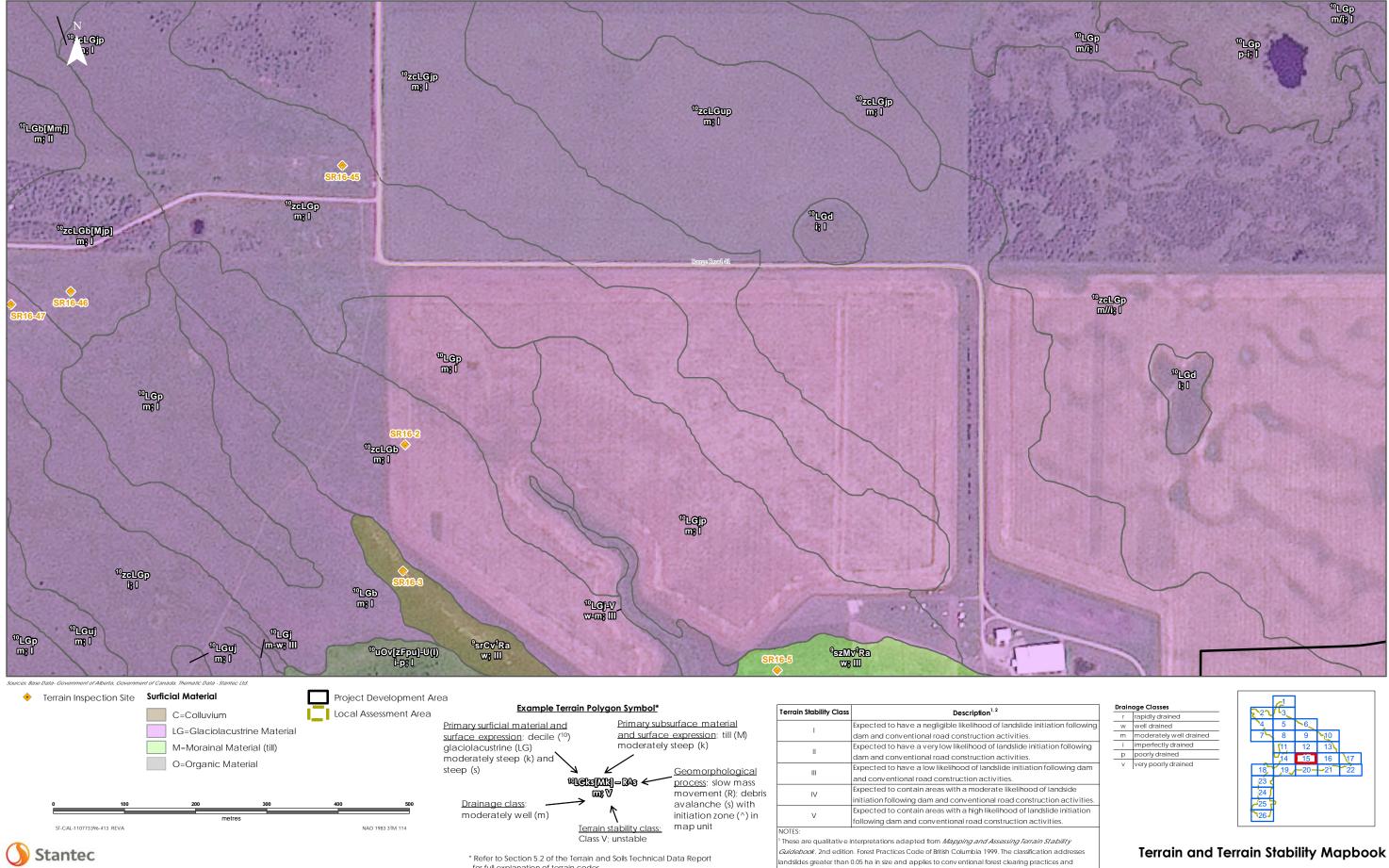
Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.


on	followin	g

Ρ	poony dramed
v	very poorly drained

for full explanation of terrain codes.

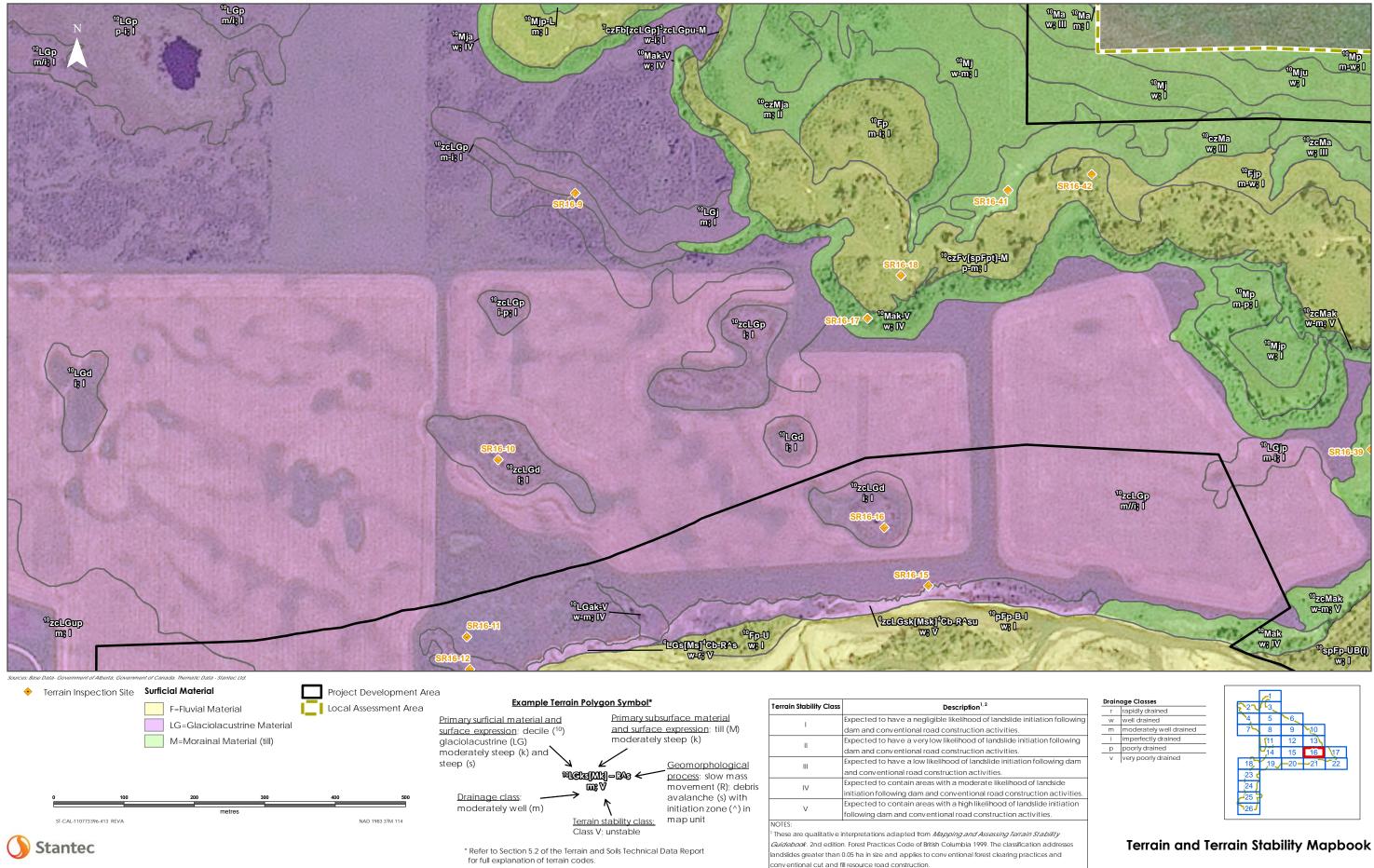
nv entional cut and fill resource road construction Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

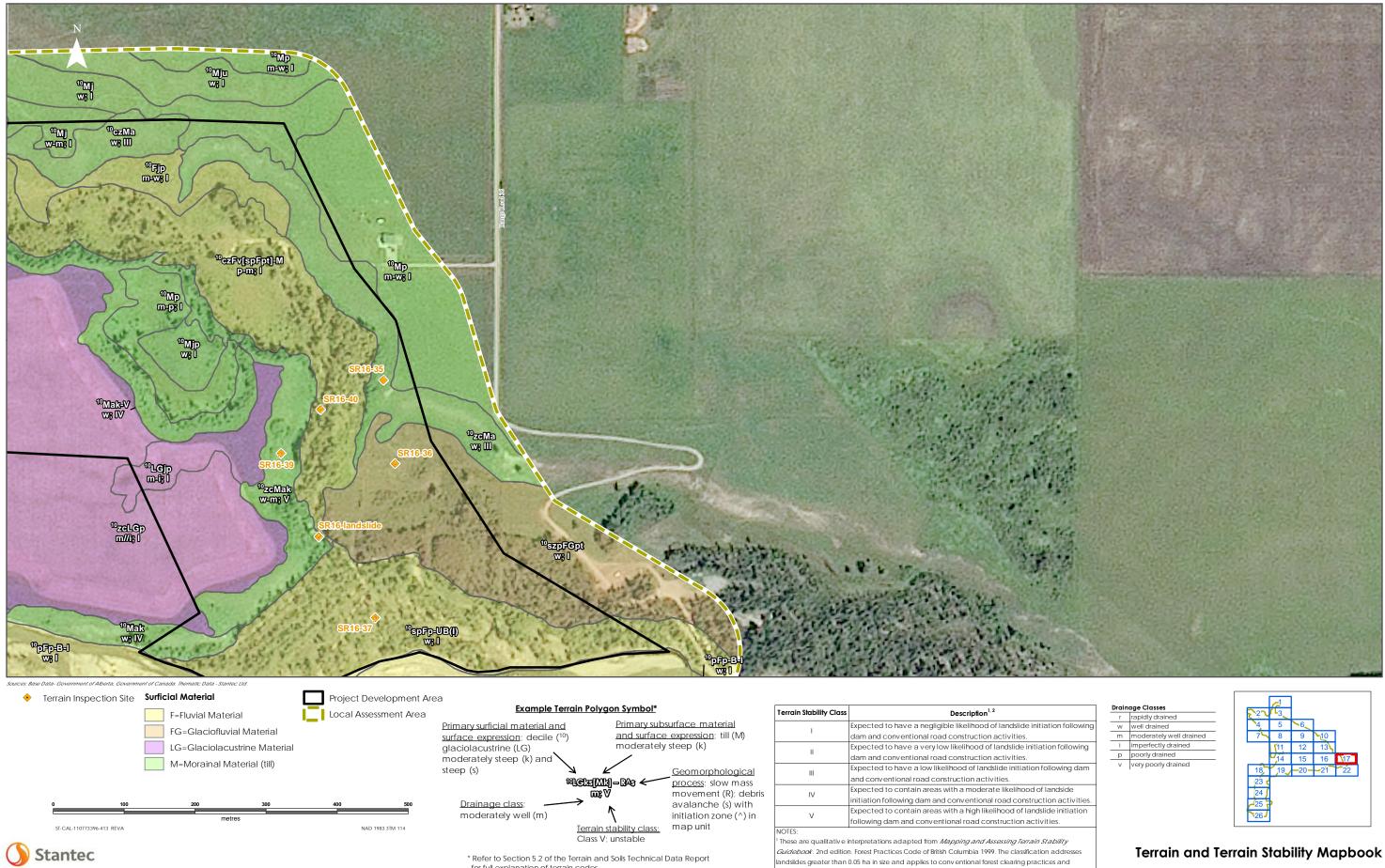

for full explanation of terrain codes.

nv entional cut and fill resource road construction Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

on following

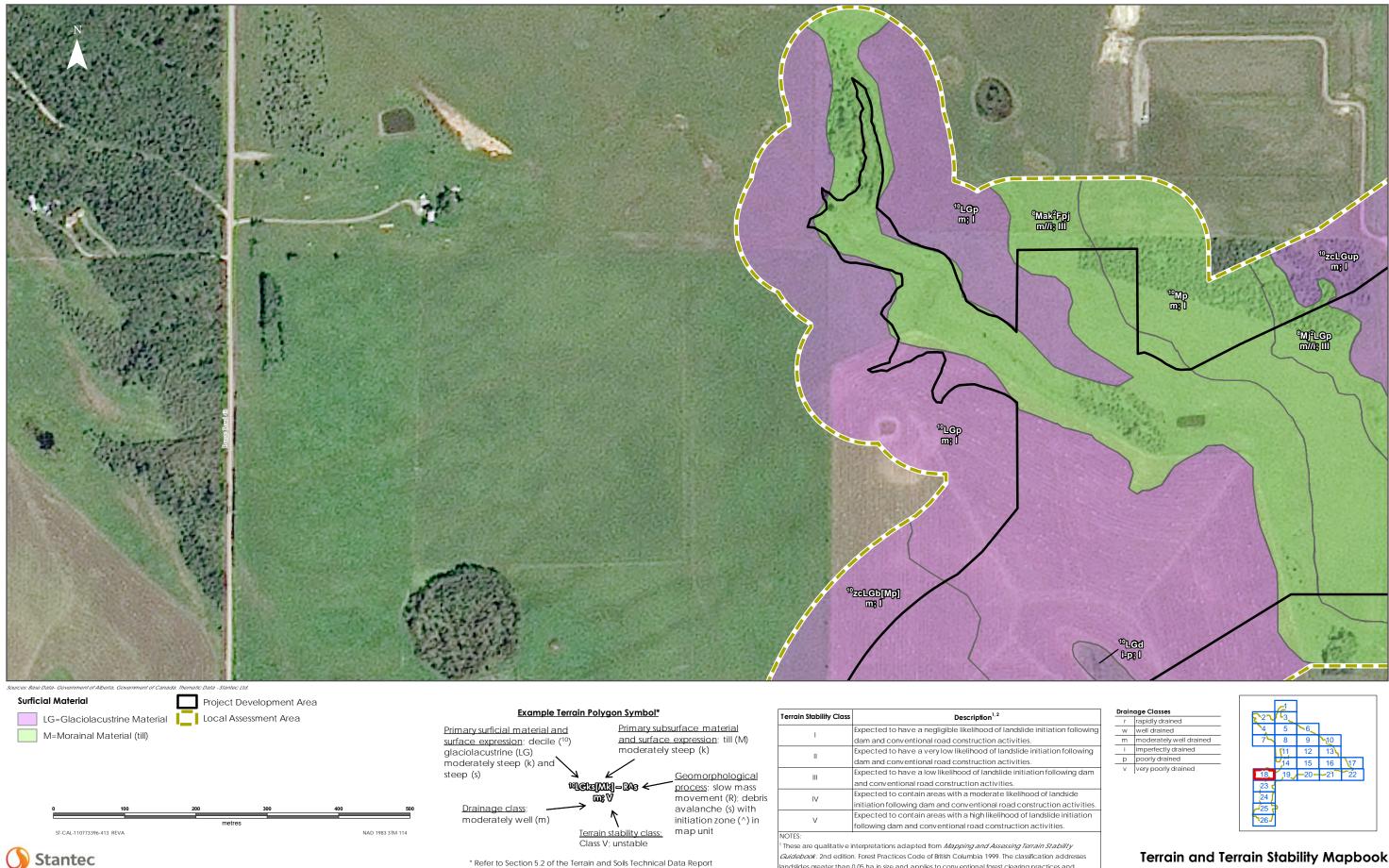
	rapialy aramoa
W	well drained
m	moderately well drained
i	imperfectly drained
р	poorly drained
v	very poorly drained


6			
3			
5	6		
8	9	10	
11	12	13	
14	15	16	17
,19	-20-	-21	22
>			
	8 11 14	8 9 11 12 14 15	8 9 10 11 12 13 14 15 16


for full explanation of terrain codes.

nventional cut and fill resource road construction. Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

г	rapidly drained
W	well drained
m	moderately well drained
i	imperfectly drained
р	poorly drained
V	very poorly drained

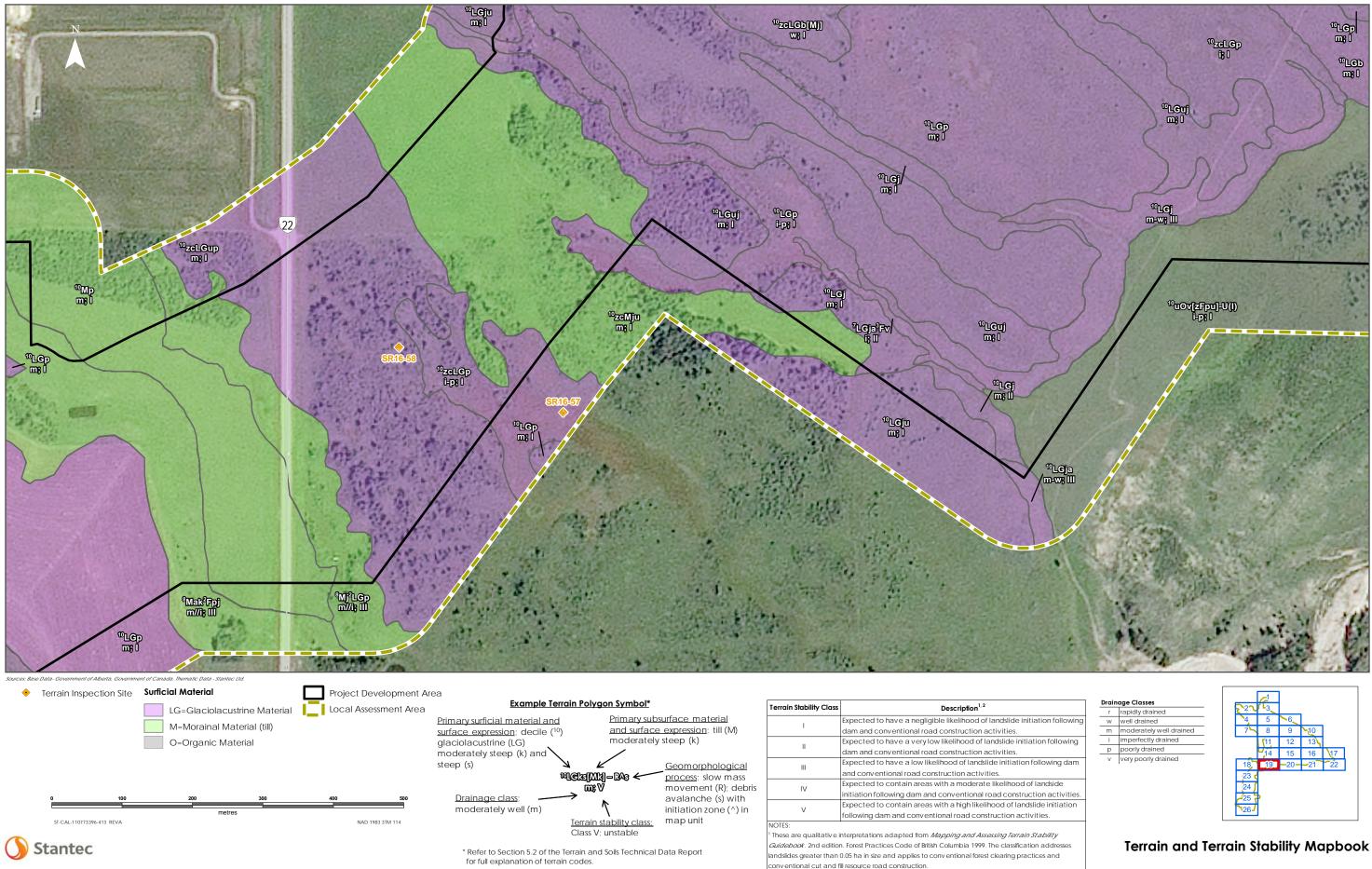


Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

for full explanation of terrain codes.

nventional cut and fill resource road construction. Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

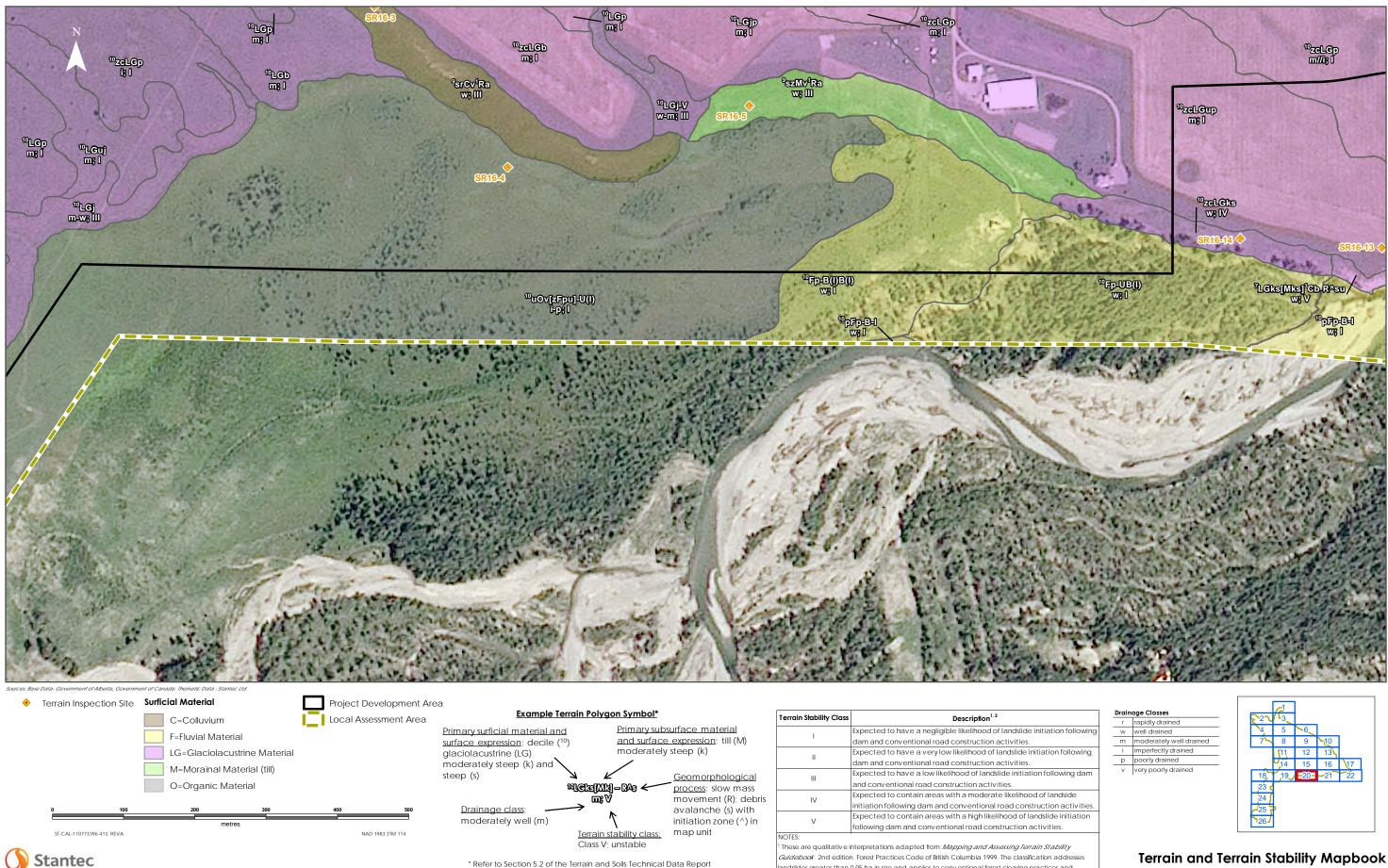
for full explanation of terrain codes.


ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

andslides greater than 0.05 ha in size and applies to conventional forest clearing practices and nventional cut and fill resource road construction.

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

r	rapidiy drained
W	well drained
m	moderately well drained
i	imperfectly drained
р	poorly drained
v	very poorly drained

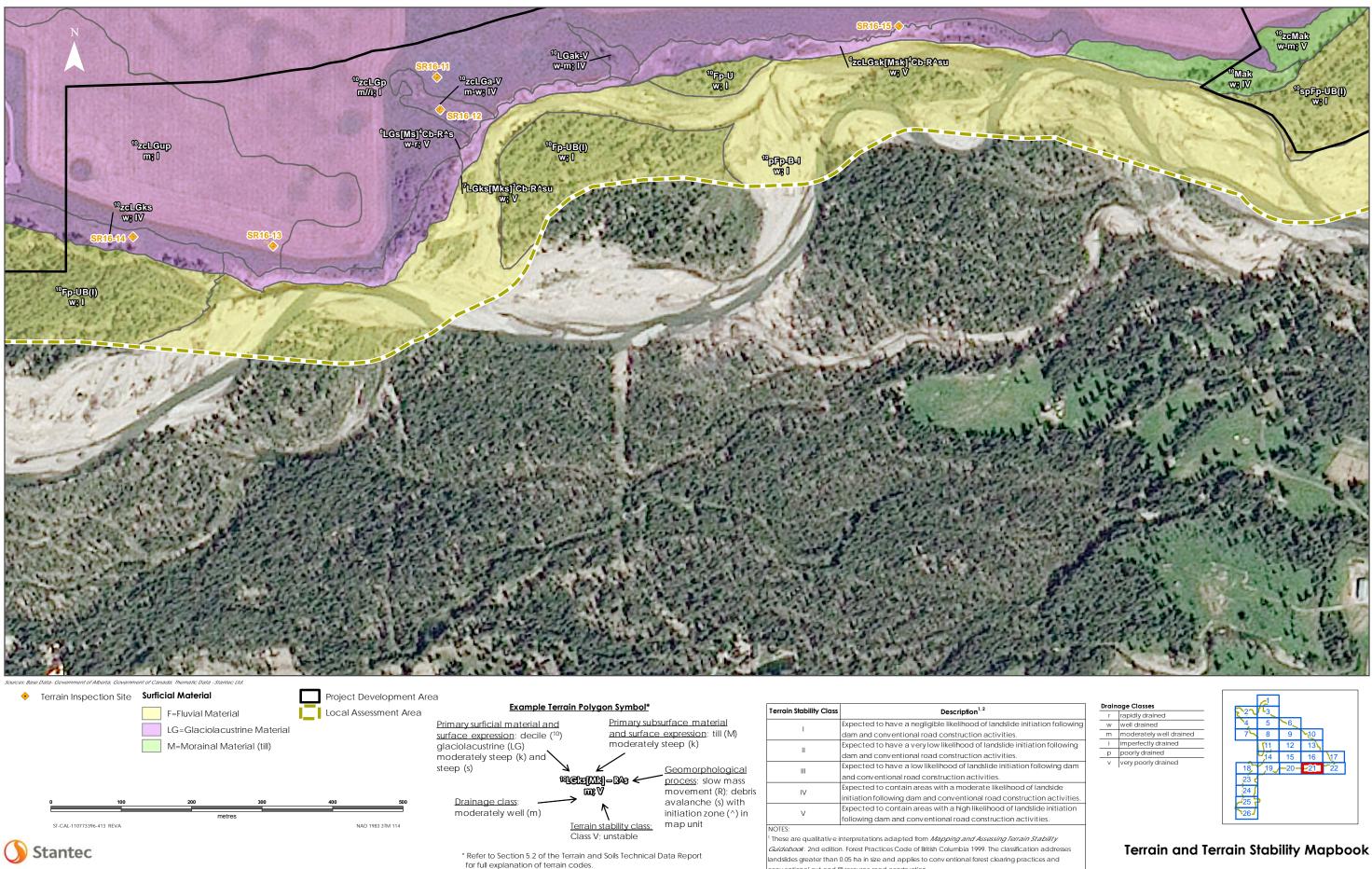

Terrain and Terrain Stability Mapbook

for full explanation of terrain codes.

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

r	rapidly drained
W	well drained
m	moderately well drained
i	imperfectly drained
р	poorly drained
v	very poorly drained

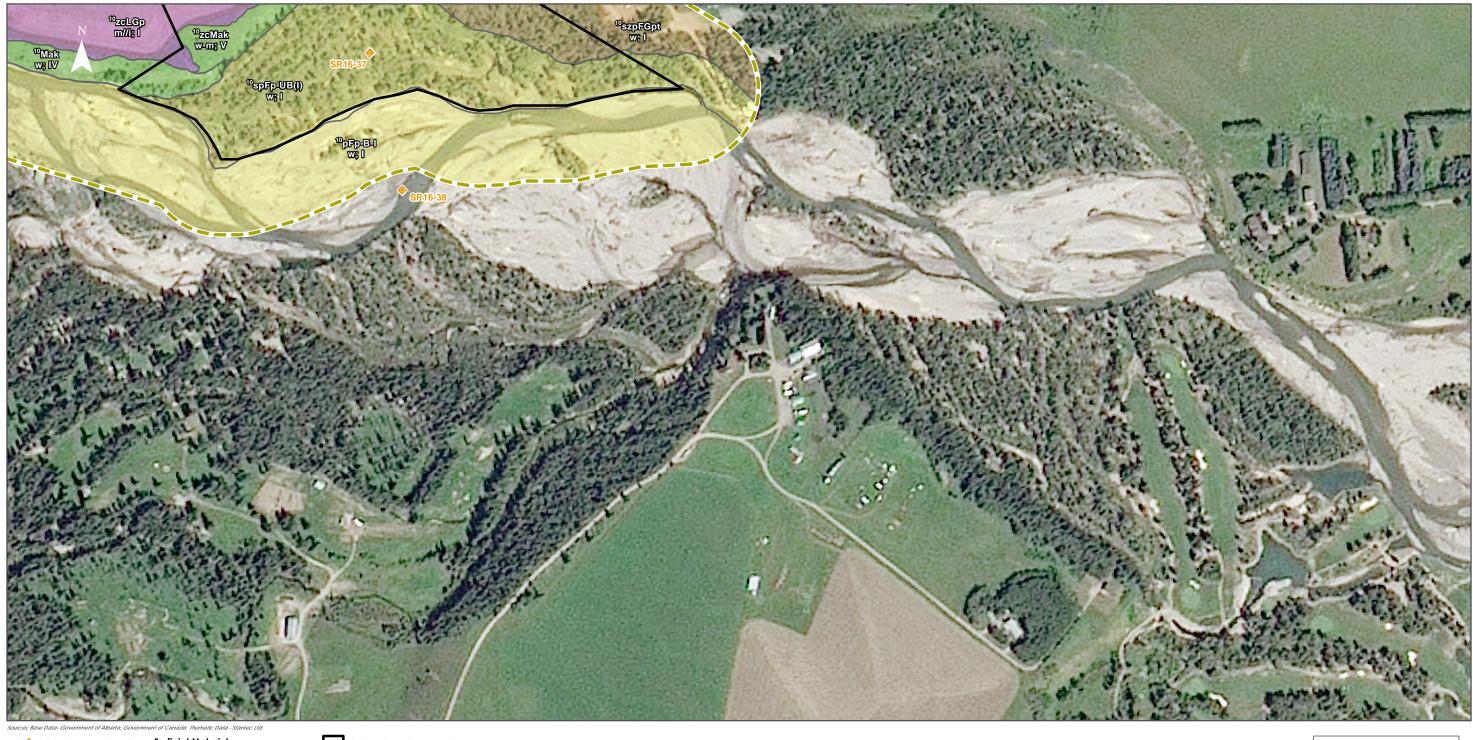
* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

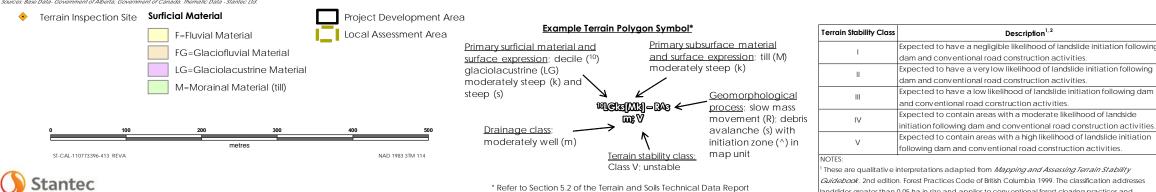

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

ventional cut and fill resource road construction

andslides greater than 0.05 ha in size and applies to conventional forest clearing practices and

r	rapidiy drained				
W	well drained				
m moderately well draine					
i	imperfectly drained				
р	poorly drained				
v	very poorly drained				


Terrain and Terrain Stability Mapbook



nv entional cut and fill resource road construction

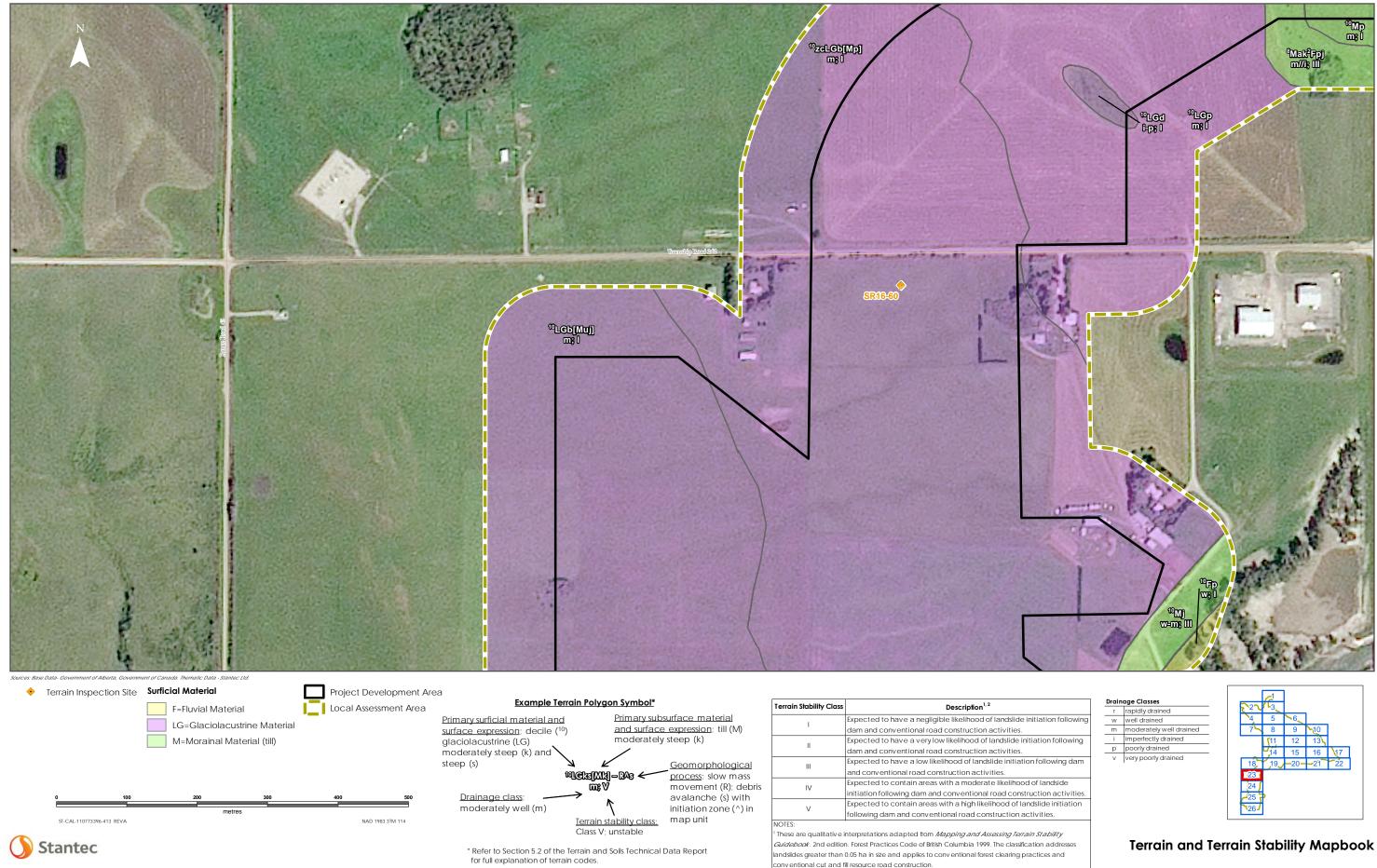
Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

Ĵ	r	rapidly drained		
Ì	W	well drained		
m moderately well drained				
	i	imperfectly drained		
	р	poorly drained		
	V	very poorly drained		

Guidebook. 2nd edition. Forest Practices Code of British Columbia 1999. The classification addresses andslides greater than 0.05 ha in size and applies to conventional forest clearing practices and nv entional cut and fill resource road construction

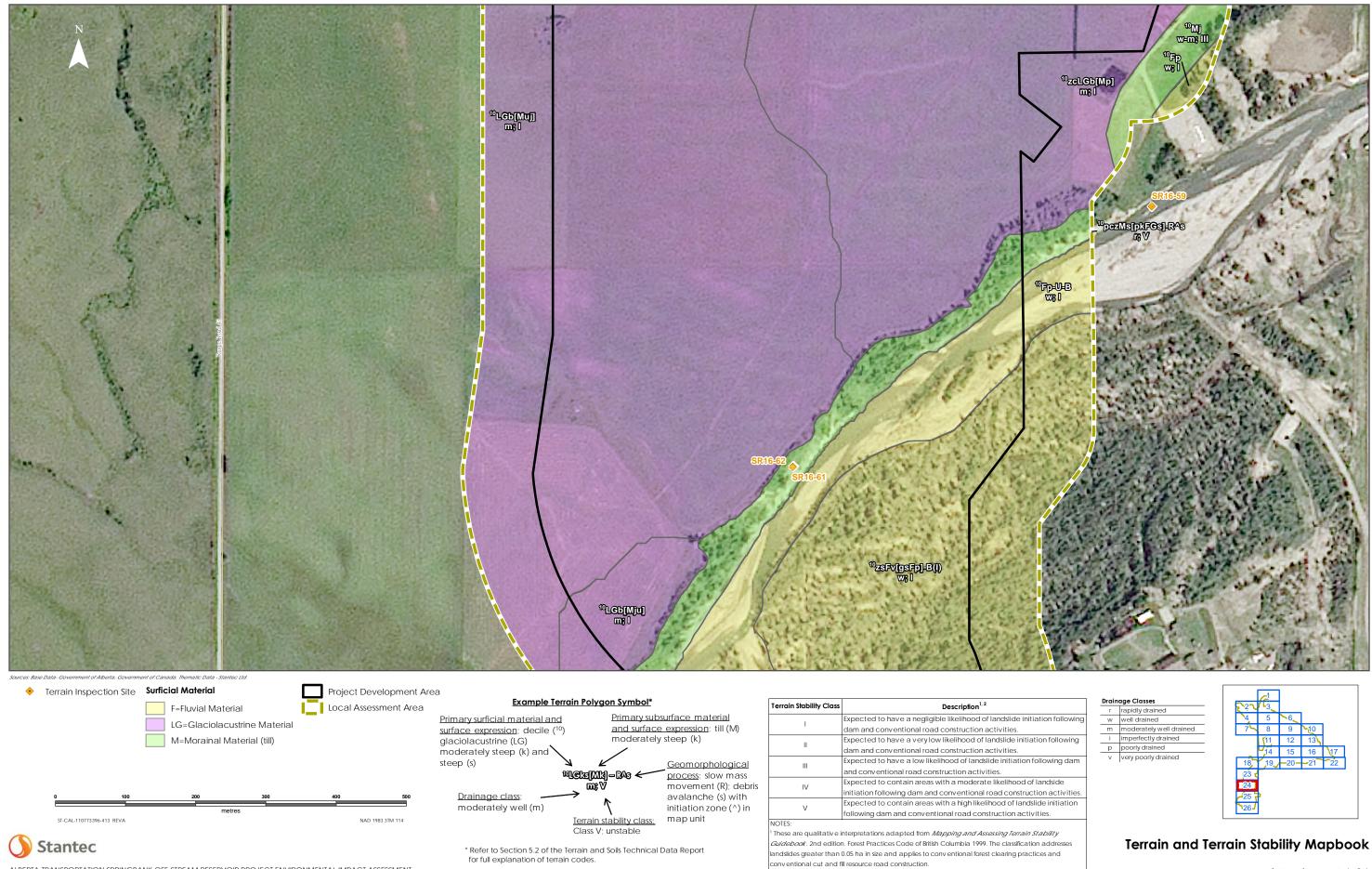
Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT


* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

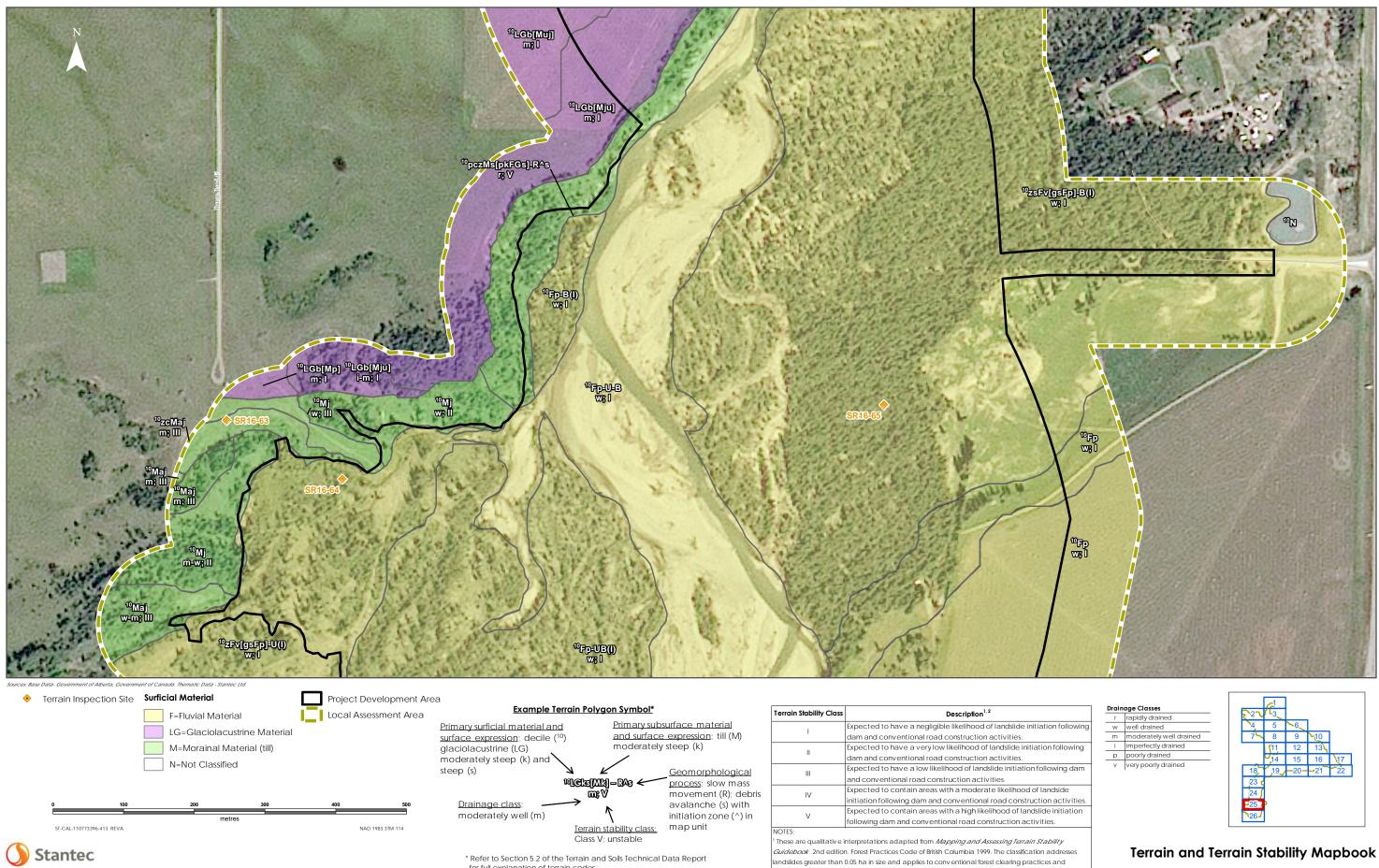
Drainage Classes

r	rapidly drained
W	well drained
m	moderately well drained
i	imperfectly drained
р	poorly drained
v	very poorly drained


Terrain and Terrain Stability Mapbook

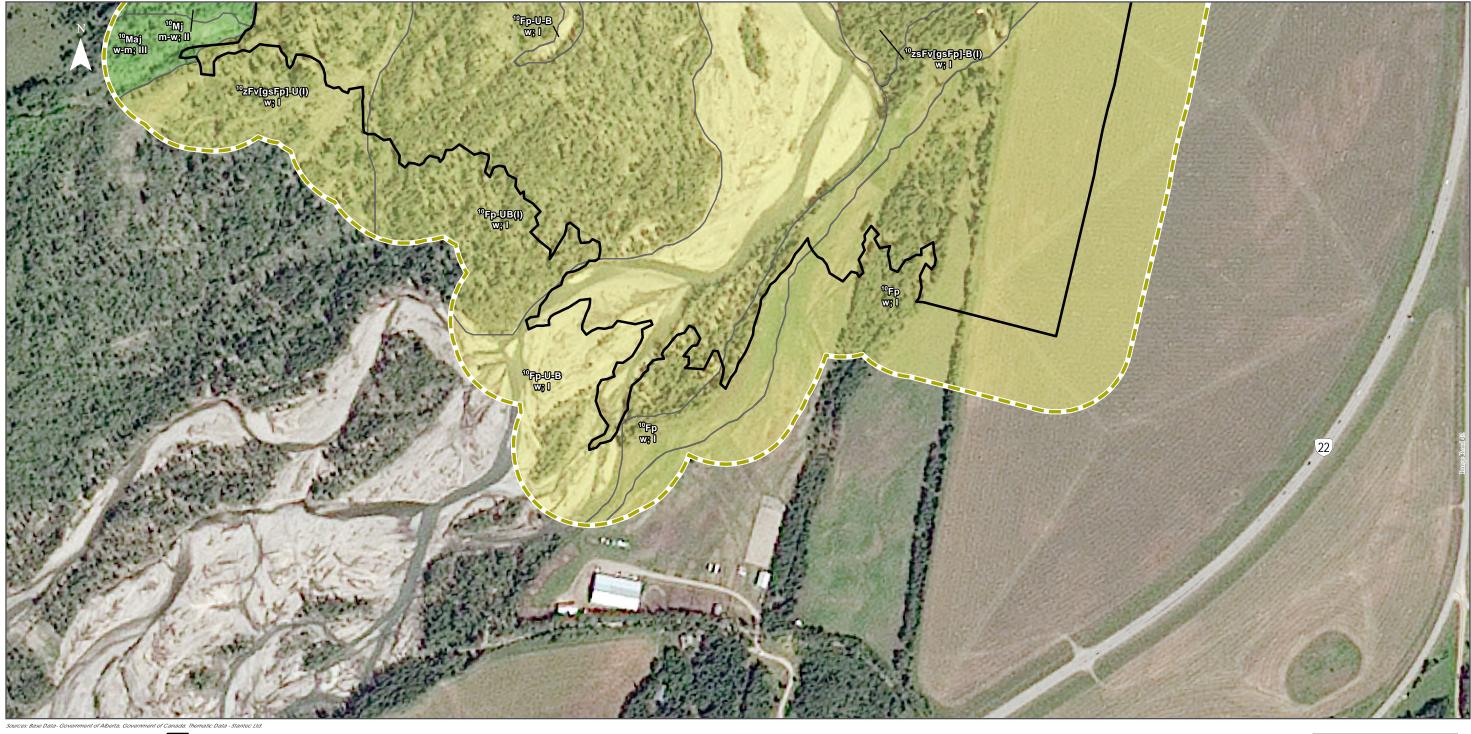
for full explanation of terrain codes.

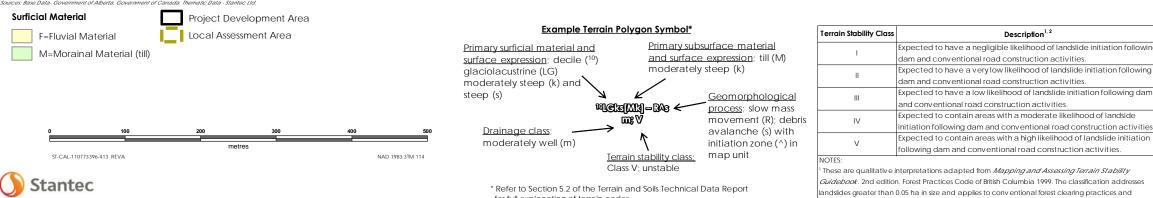
Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.


on	following	

for full explanation of terrain codes.

Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

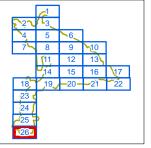

r	rapidly drained				
W	well drained				
m moderately well drained					
i	imperfectly drained				
р	poorly drained				
V	very poorly drained				



for full explanation of terrain codes.

nv entional cut and fill resource road construction Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

on	following



* Refer to Section 5.2 of the Terrain and Soils Technical Data Report for full explanation of terrain codes.

nventional cut and fill resource road construction. Terrain polygon units ranked as I, II and III may contain minor areas of class IV and V terrain. These reas may not have been delineated due to the mapping scale.

Drainage Classes

rapidly drained
well drained
moderately well drained
imperfectly drained
poorly drained
very poorly drained

Terrain and Terrain Stability Mapbook

Attachment B Terrain Map Legend March 2018

Attachment B TERRAIN MAP LEGEND

Attachment B Terrain Map Legend March 2018

Terrain Map Legend

Dominant surficial material and surface expression; decil (⁷) glaciolacustrine (LG) moderately steep (k) and steep (s) <u>Drainage cla</u> moderately w	e	<u>ce exp</u> erately	<u>material a</u> pression; til y steep (k) Gks[Mk] ³ C m; V <u>Terrain Sta</u> TSC V; un	I (M) Cb - R^s	/ <u>and sur</u> (³) collu	 <u>dary surficial material</u> <u>fface expression</u>; decile uvial (C) blanket (b) <u>Geomorphological</u> <u>process</u>; slow mass movement (R); debris avalanche (s) with initiation zone (^) in map unit
<u>Surficial Material</u> colluvium fluvial glaciofluvial glaciolacustrine	C F FG LG	orga	en water anic Irock		M N O R	
<u>Surface Expression</u> plain gentle slope moderate slope moderate steep slope steep slope	p j a k s		vei bla und hui teri	n venee neer (<1 anket (>´ dulating mmocky raced pression	1m) /	x v b u h t d
Geomorphological Proc braiding channel irregularly sinuous chann surface seepage meandering channel inundation gully erosion Rapid mass movement		B L M V R	Subclass Moveme Initiation slump in s debris av	nt Proce zone surficial	esses material	" U S

Attachment C Soils Data Attachment March 2018

Attachment C SOILS DATA ATTACHMENT

Attachment C Soils Data Attachment March 2018

C.1 SOIL MAP UNIT DESCRIPTION TABLES

Table C-1 Characteristics of the Dunvargan (DVG) Map Unit

Soil Classif	fication				Orthic Black Chernozem				
Soil Correl	ation Area				8				
Parent ma	aterial and Te	extural C	Group		Till (Fine)				
Salinity					None				
Texture (to	opsoil/subsoil)			CL/C				
Average	topsoil thickn	ess ; Typ	pical ran	ge (cm)	25.4; 20 to	34			
Averages	subsoil thickr	ness ; Typ	oical ran	ge (cm)		23.8; 16 to	36		
Drainage	class					Moderate	ly well to well		
Colour Tra	Insition (Cou	nt)				Good (4),	Fair (8), Poor (1)		
Surface St	oniness					1 (<0.01%))		
				I	Example Pi	rofile ^{1,3}			
Horizon	Depth (cm)	Field	Texture			cture ade/kind)	Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)
Ар	0-19	CLAY	loam	Friable	M/I	-/GR	10YR 2/1	2	-
Bm	19-43	Cl	AY	Friable	M/F/SB		10YR 4/3	2	-
Ck	43-100	CL	AY	Firm	MA		2.5Y 4/3	2	-
			REPRES	ENTATIVE CHE		ID PHYSICAL	PROPERTIES ^{1, 3}		
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density⁵ (g/cm³)
Ар	25	67	7.07	1.9	0.26	0.32	7.2	CLAY LOAM	1.05
Bm	23	55	6.57	0.76	0.25	0.49	-	CLAY	1.3
Ck	52	77	7.72	30	0.30	0.51	-	HEAVY CLAY	1.35
NOTES:									

NOTES:

¹ Inspection site SRBL16019

² Based on 13 profiles

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-2 Characteristics of the Dunvargan, calcareous (DVGca) Map Unit

Soil Classifi	cation				Calcared	ous Black Cherr	nozem		
Soil Correla	ation Area				8				
Parent ma	terial and Te	extural	l Group		Till (Fine)				
Salinity					None				
Texture (to	psoil/subsoil)			CL/C to H	łC			
Average to	opsoil thickn	ess ; T	ypical ra	inge (cm)	20.1; 9 to	29			
Average su	ubsoil thickr	ness ; T	ypical ra	ange (cm)		24.1; 14 to	o 40		
Drainage o	class					Moderate	ely well to well		
Colour Trar	nsition (Cou	nt)				Good (2)	, Fair (4), Poor	(1)	
Surface Sto	oniness					1 to 3 (<0	.01 to 3%)		
				Ex	ample Prof	ile ^{1,3}			
Horizon	Depth (cm)	-	ield kture	Consistency ^₄	Structure (class/grade/kind)		Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)
Ар	0-18	(CL	Friable	M/N	1/GR	10YR 2/1	-	-
Bmk	18-45	ŀ	HC	Firm	M/N	//SB	10YR 4/3	-	-
Ck	45-100	ŀ	HC	Hard		-	2.5Y 4/2	-	-
			REPR	ESENTATIVE CHEM	IICAL AND	PHYSICAL	PROPERTIES ^{1,3}		
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density ⁵ (g/cm ³)
Ар	20	83	6.59	1.4	0.48	0.39	6.6	CLAY LOAM	0.95
Bmk	24	65	7.93	23	0.69	1.4	-	HEAVY CLAY	1.3
Ck	66	66	8.11	23	1.3	3.9	-	HEAVY CLAY	1.35
² Based on	•		ot matc	h the Representa	tive Chem	ical and Pl	nysical Propert	ies for all parame	eters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-3 Characteristics of the Fish Creek (FSH) Map Units

Soil Classific	cation				Orthio	c Black Ch	ernozem				
Soil Correla	ation Area				8	8					
Parent mat	terial and Te	ktural C	Group		Glac	Glaciolacustrine (Fine to Very Fine)					
Salinity					None	è					
Texture (to	psoil/subsoil)				CL/C	to HC					
Average to	psoil thickne	ess ; Typ	oical range	e (cm)	24.9;	14 to 33					
Average su	ubsoil thickne	ess ; Typ	oical rang	e (cm)	23.0;	9 to 51					
Drainage c	class				Mode	erately we	ll to well				
Colour Trar	nsition (Coun	t)			Good	d (21) Fair	(23) Poor (1)				
Surface Sto	oniness				1 to 2	2 (<0.01 to	0.1%)				
				Exam	nple Profile	1,3					
Horizon	Depth (cm)	Field	1 Texture	Consistency ⁴	Struc (class/gra		Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
Ар	0-26	ç	SiCL	Friable	M/F	/GR	10YR 2/1	0	-		
Bm	26-46		HC	Firm	W/C/SB		10YR 3/2	0	-		
Ck	46-120		HC	Very Firm	M	MA 2.5Y 5/3 0 -					
			REPRESE	NTATIVE CHEMIC	AL AND PH	IYSICAL PR	OPERTIES ^{1,3}				
				Calcium Carbonate			Organic				
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Equivalent (%)	EC (ds/m)	SAR	Carbon (%)	Texture Class	Bulk Density ^s (g/cm ³)		
	Thickness ²			Equivalent	_	SAR 0.33	Carbon	Texture Class SILTY CLAY LOAM			
Horizon	Thickness ² (cm)	(%)	(CaCl ₂)	Equivalent (%)	(ds/m)		Carbon (%)	SILTY CLAY	(g/cm ³)		

NOTES:

¹ Inspection site SRWC16022

² Based on 45 profiles

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-4 Characteristics of the Fish Creek, calcareous (FSHca) Map Unit

Soil Class	ification					Calcareou	us Black Chernoz	zem		
Soil Corre	elation Area					8				
Parent m	aterial and	Textur	al Group			Glaciolacustrine (Fine to Very Fine)				
Salinity						None				
Texture (t	opsoil/subsc	oil)				CL/C-HC				
Average	topsoil thick	ness ;	Typical ra	inge (cm)		24.4; 16 to	32			
Average	subsoil thick	kness ;	Typical ra	ange (cm)	23.4; 10 to	44				
Drainage	e class				Moderate	ly Well to Well				
Colour Tr	ansition (Co	unt)				Good (9),	Fair (9), Poor (1)			
Surface S	Stoniness					1 to 2 (<0.	01 to 0.1%)			
				ł	Example Pro	ofile ^{1,3}				
Horizon	Depth (cm)	Field	I Texture	Consistency ⁴	Structure (class/grade/kind)		Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)	
Apk	0-16		CL	Friable	M/F	/GR	10YR 2/1	-	-	
Bmk	16-58		HC	Firm	M/0	C/SB	2.5Y 4/3	-	-	
Ck	58-120		HC	Firm		-	2.5Y 5/3	-	-	
	•		REPR	ESENTATIVE CHI	MICAL AN	D PHYSICAL	PROPERTIES ^{1,3}		•	
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density ^s (g/cm ³)	
Apk	24	99	7.22	3.0	0.99	0.45	7.2	CLAY LOAM	1.1	
Bmk	23	72	7.24	4.0	0.43	0.45	-	HEAVY CLAY	1.35	
Ck	53	74	7.58	26	0.37	0.26	-	HEAVY CLAY	1.3	
	ion site SRW on 19 profile:		0							

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-5 Characteristics of the Fish Creek, gleyed (FSHgl) Map Unit

Soil Classifi	cation					Gleyed Black Chernozem					
Soil Correla	ation Area					8					
Parent ma	terial and Te	xtural	Group			Glaciolacustrine (Fine to Very Fine)					
Salinity						None					
Texture (to	psoil/subsoil)					CL/C-HC					
Average to	opsoil thickne	ess ; Ty	pical ran	ge (cm)		22.1; 16 to 2	27				
Average si	ubsoil thickne	əss; Ty	pical rang	ge (cm)		24.8; 13 to 4	1				
Drainage o	class					Imperfect					
Colour Trai	nsition (Coun	it)				Good (6), F	air (3), Poor (2)			
Surface Sto	oniness					1 (<0.01%)					
				Exa	mple Profi	le ^{1,3}					
Horizon	Depth (cm)	Field	1 Texture	Consistency ⁴	Structure (class/grade/kind)		Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast		
Ар	0-19		CL	Friable	M	/F/GR	10YR 2/1	-	-		
Bgjk	19-44		HC	Firm	S/	/C/SB	2.5Y 4/3	-	C/M/D		
Ckgj	44-110		НС	Firm		-	2.5Y 4/2	-	-		
			REPRES	ENTATIVE CHEMI	CAL AND	PHYSICAL PR	OPERTIES ^{1,3}				
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density₅ (g/cm³)		
Ар	22	130	5.97	1.7	0.28	0.75	10	CLAY LOAM			
Bgjk	25	67	7.75	4.0	0.43	1.5	-	HEAVY CLAY			
Ckgj	53	77	8.00	21	0.77	6.7	-	HEAVY CLAY			
NOTES: ¹ Inspectio	on site SRKF16	002									
² Based on											

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-6 Characteristics of the Mesa Butte (MSB) Map Unit

Soil Classifi	cation					Rego Black Chernozem					
Soil Correla	ation Area					8					
Parent ma	terial and T	extur <i>a</i>	ll Group			Colluvial/Residuum (sandstone and shale, undifferentiated)					
Salinity						None					
Texture (to	psoil/subsoi	il)				SL/SL					
Average to	opsoil thickr	ness; T	ypical ra	inge (cm)		20					
Average s	ubsoil thicki	ness; T	ypical ra	ange (cm)		0					
Drainage o	class					Well					
Colour Tran	nsition (Cou	int)				Good (1)				
Surface Sto	oniness					1 (<0.01%	%)				
				E	Example Pro	ofile ^{1,3}					
Horizon	Depth (cm)		-ield xture	Consistency ⁴	Struc (class/gra		Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
Ah	0-15		SL	Friable	M/F	/GR	10YR 2/2	-	-		
Ck	15-35		SL	Friable	-	- 2.5Y 6/1 60 -					
			REPF	RESENTATIVE CHE	EMICAL AN	D PHYSICA	L PROPERTIES ^{1,}	3			
Master Horizon	Average Thickness ² (cm)		pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density⁵ (g/cm³)		
Ah	15	77	7.04	4.0	0.47	0.17	3.5	SANDY LOAM	1.05		
Ck	20	69	7.29	14	0.50	0.14	-	SANDY LOAM	1.45		
² Based on				ch the Represen							

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-7 Characteristics of the Pothole Creek (POT) Map Unit

ion Area						Orthic Humic Gleysol					
					8						
erial and Tex	tural	Group			Glaciolacustrine (Fine to Very Fine) or Till (Fine)						
					None						
soil/subsoil)					C/HC						
osoil thickne	ss; Ty	pical ran	ge (cm)		25.7; 18 to	36					
osoil thickne	ess; Ty	pical ran	ige (cm)	31.2; 15 to	o 61						
ass					Poor						
ition (Count	t)				Good (1),	Fair (5), Poor ((4)				
niness					1 (<0.01%))					
			Ex	ample Prof	le ^{1,3}						
Depth (cm)		Field exture	Consistency ^₄			Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)			
0-20		С	Sticky	W/F	/GR	10YR 2/1	5	-			
20-62		HC	Sticky	M/C	C/SB	2.5Y 4/1	-	C/F/P			
62-120		HC	Firm		-	2.5Y 4/2	-	-			
		REPRE	SENTATIVE CHEM	/ICAL AND	PHYSICAL P	ROPERTIES ^{1,3}					
Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density (g/cm ³)			
26	91	6.86	1.4	0.53	0.52	6.5	CLAY	1.0			
31	66	7.58	18	0.32	0.54	-	HEAVY CLAY	1.3			
43	74	7.81	18	0.36	0.81	-	HEAVY CLAY	1.25			
	Depth (cm) 0-20 20-62 62-120 Average Thickness ² (cm) 26 31	Depth (cm) Te 0-20 20-62 62-120 4 Average [hickness² (cm) Sat (%) 26 91 31 66	Depth (cm) Field Texture 0-20 C 20-62 HC 62-120 HC REPRE Average Inickness ² (cm) Sat (%) 26 91 6.86 31 66 7.58	Depth (cm) Field Texture Consistency ⁴ 0-20 C Sticky 0-20 C Sticky 20-62 HC Sticky 62-120 HC Firm REPRESENTATIVE CHEN (cm) Average [hickness ² (cm) 26 91 6.86 1.4 31 66 7.58 18	Desoil thickness; Typical range (cm) ass ition (Count) iness Depth (cm) Field Consistency₄ Struct (class/grass/grass) 0-20 C Sticky W/F 20-62 HC Sticky M/C 62-120 HC Firm Sticky REPRESENTATIVE CHEMICAL AND Average Inickness² Sat (%) pH (Cacl₂) Calcium (Carbonate Equivalent (%)) EC (ds/m) 26 91 6.86 1.4 0.53 31 66 7.58 18 0.32	Or C/HC Soil thickness; Typical range (cm) 25.7; 18 to ass Poor Good (1), ass Poor ition (Count) Good (1), Ition (Count) Ition (Count) Ition (Count) Structure (class/grade/kind) Or Sticky W/F/GR Oth C Sticky M/C/SB Oth C Sticky Sticky Sticky	C/HC soil/subsoil) C/HC soil thickness; Typical range (cm) 25.7; 18 to 36 soil thickness; Typical range (cm) 31.2; 15 to 61 poor Good (1), Fair (5), Poor (1) Example Profile ^{1.3} Colour (nue value/ chroma) Object (1) Depth (cm) Consistency4 Structure (class/grade/kind) Colour (nue value/ chroma) 0-20 C Stricky M/C/SB 2.5Y 4/1 0-20 C Sticky M/C/SB 2.5Y 4/1 2.5Y 4/1 20-62 HC Sticky M/C/SB 2.5Y 4/1 2.5Y 4/2 REPRESENTATIVE CHEMICAL AND PHYSICAL PROPERTIES ^{1.3} Average Thickness ² Sat PH (CaCl ₂) Calcium Carbonate Equivalent (%) SAR Organic Carbon (%) 26 91 6.86 1.4 0.53 0.52 6.5 31 66 7.58 18 0.32 0.54 -	C/HC soil/subsoil) C/HC soil thickness: Typical range (cm) 31.2; 15 to 36 soil thickness: Typical range (cm) 31.2; 15 to 61 soil thickness: Typical range (cm) 31.2; 15 to 61 ass Poor Good (1), Fair (5), Poor (4) iness 1 (<0.01%) Iteld Coarse Fragment Colour (hue value/ chroma) Coarse Fragment Content (%) Openth Texture Consistency4 Structure (class/grace/kind) Colour (hue value/ chroma) Coarse Fragment Content (%) Openth Texture Sticky W/F/GR 10YR 2/1 5 Openth Consistency4 W/F/GR 10YR 2/1 5 Openth Consistency4 Structure (class/grace/kind) Colour (%) Content Cont			

² Based on 10 profiles

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-8 Characteristics of the Sarcee (SRC) Map Units

Soil Classifi	cation	<u>.</u>				Calcare	eous E	Black Chernozei	m		
Soil Correla	ation Area					8					
Parent ma	terial and Te	extural	Group			Fluvial (Medium) or Glaciofluvial (Medium)					
Salinity						None					
Texture (to	psoil/subsoil)				SiL/SiL					
Average to	opsoil thickn	ess; Ty	pical rar	nge (cm)		29					
Average s	Average subsoil thickness; Typical range (cm)										
Drainage o	Drainage class										
Colour Trai	nsition (Cour	nt)				Good (1)				
Surface Sto	Surface Stoniness										
				Ex	kample	Profile ^{1,3}					
Horizon	Depth (cm)	-	ield ture	Consistency ^₄	Structure (class/grade/kind)		Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
Ahk	0-29	0,	SiL	Loose	I	M/F/GR		10YR 2/1	-	-	
Ck	29-60	0,	SiL	Loose		-		10YR 4/1	-	-	
Ckgj	60-100	0,	SiL	Friable		-		2.5Y 4/2	-	C/M/F	
			REPRI	ESENTATIVE CHEI		AND PHYS	ICAL	PROPERTIES ^{1,3}			
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m	n) SA	AR	Organic Carbon (%)	Texture Class	Bulk Density ⁵ (g/cm ³)	
Ahk	39	110	7.47	24	0.82	0.2	27	9.8	SILT LOAM	1.05	
Ck	31	55	7.62	34	0.43	0.5	58	-	SILT LOAM	1.4	
Ckgj	40	42	7.64	36	0.42	0.7	77	-	SILT LOAM	1.5	
NOTES: ¹ Inspectio ² ² Based c	on site SRBL16 on 1 profile	5003	<u> </u>					<u>.</u>	<u>.</u>		

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-9 Characteristics of the Sarcee over gravel (SRCxg) Map Units

Soil Classif	ication					Calcareous E	Black Chernoze	m			
Soil Correl	ation Area					8					
Parent ma	aterial and Te	extural	Group			Fluvial (Medium) or Glaciofluvial (Medium)					
Salinity						None					
Texture (to	psoil/subsoil)				Clay loam/ L	oam				
Average t	opsoil thickn	ess; Ty	pical rar	nge (cm)		20					
Average s	ubsoil thickn	ess; Ty	pical rai	nge (cm)		23					
Drainage	class					Well					
Colour Tra	nsition (Cou	nt)				Good (1)					
Surface St	oniness					1 (<0.01%)					
				E	xample P	rofile ^{1,3}					
Horizon	Depth (cm)	-	- ield kture	Consistency ⁴		ucture grade/kind)	Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
Ahk	0-33		LS	Friable	W	/M/SG	10YR 3/1	-	-		
Bmk	33-50		L	Friable	M	/F/GR	10YR 3/2	-	-		
llCk	50-60		L	Firm		MA 10YR 3/2 45 -					
			REPRI	ESENTATIVE CHEI		ND PHYSICAL	PROPERTIES ^{3,6}	•			
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density ^s (g/cm ³)		
Ар	33	97	6.9	0	0	NM	4	CLAY LOAM	1.05		
	27	99	7.4	0	0	NM	2.1	LOAM	1.4		
Bm				7 0 NM 0 LOAM							

¹ Inspection site SRWC16033

² Based on 1 profile

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

⁶ Chemical and physical properties are from Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-10 Characteristics of the Twin Bridges (TBR) Map Units

Soil Classif	ication					Orthic Regosol					
Soil Correl	ation Area				:	8					
Parent ma	aterial and Te	extural	Group			Fluvial (Moderately Coarse to Very Coarse) or Glaciofluvial (Moderately Coarse to Very Coarse)					
Salinity						None					
Texture (to	psoil/subsoil)			:	SiL/SL					
Average t	opsoil thickn	iess; Ty	pical ra	nge (cm)	:	22					
Averages	subsoil thickr	ness; Ty	/pical ra	nge (cm)	(C					
Drainage	class				,	Well					
Colour Tra	nsition (Cou	nt)				Fair (1)					
Surface St	oniness					1 (<0.01%)					
				E	xample P	rofile ^{1,3}					
Horizon	Depth (cm)		- ield xture	Consistency ⁴		ucture grade/kind)	Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
Ahk	0-22		SiL	Very Friable	W	//F/SB	10YR 2/2	-	-		
Ck1	22-33		SiL	Very Friable		SG	10YR 4/2	-	-		
Ahkb	33-49		SiL	Very Friable		SG	10YR 2/2	-	-		
Ck2	49-110		SL	Very Friable		SG	10YR 4/2	-	-		
			REPRES	ENTATIVE CHEMI	CAL AND	PHYSICAL PR	OPERTIES ^{1,3}				
Master	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density ^s (g/cm ³)		
Horizon		10	7.34	-	0.68	0.14	4.6	SILT LOAM	1.1		
Ahk	22	69	7.34		0.00						
	22 11	69 55	7.54	28	0.45	0.17	-	SILT LOAM	1.55		
Ahk						0.17	- 4.3	SILT LOAM SILT LOAM	1.55 1.1		

¹ Inspection site SRKF16140

² Based on 1 profile

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-11 Characteristics of the Gleyed Twin Bridges (TBRgI) Map Units

Soil Classifi	ication					Gleyed Rego	bsol				
Soil Correla	ation Area					8					
Parent ma	iterial and Te	extural	Group			Fluvial (Moderately Coarse to Very Coarse) or Glaciofluvial (Moderately Coarse to Very Coarse)					
Salinity						None					
Texture (to	psoil/subsoil)				SiL/SL					
Average to	opsoil thickn	ess; Ty	pical rar	nge (cm)		28					
Average s	ubsoil thickn	iess; Ty	pical ra	nge (cm)		0					
Drainage	class					Imperfect					
Colour Tra	nsition (Cou	ר)				Fair					
Surface Sto	oniness					1 (0.01%)					
				E	xample F	Profile ^{1,3}					
Horizon	Depth (cm)	-	- ield kture	Consistency ⁴		ructure grade/kind)	Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
Ahk	0-28	V	ŕfSL	Friable	N	1/M/SB	10YR 2/2	-	-		
Ckgj1	28-45	L	_fS	Friable		SG	2.5Y 4/3	-	C/F/F		
Ckgj2	45-100	V	ŕfSL	Friable		SG 2.5Y 4/3 - C/M/D					
			REPRES	ENTATIVE CHEMI	CAL AND	PHYSICAL PR	ROPERTIES ^{3,6}				
	Average Thickness ²	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)) SAR	Organic Carbon (%)	Texture Class	Bulk Density ^s (g/cm ³)		
Master Horizon	(cm)	(70)	(00012)								
	(cm) 28	99	7.5	10	0	NM	6.6	SILT LOAM	1.1		
Horizon	. ,	• •			0	NM NM	6.6 0	SILT LOAM LOAM	1.1 1.5		

NOTES:

¹ Inspection site SRBL6027

² Based on 1 profile

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

⁶ Chemical and physical properties are from Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-12 Characteristics of the Gravelly Twin Bridges (TBRgr) Map Units

Soil Classifi	cation					Orthic Regosol					
Soil Correla	ation Area					8					
Parent ma	terial and Te	extural	Group			Fluvial (Moderately Coarse to Very Coarse, gravelly) or Glaciofluvial (Moderately Coarse to Very Coarse, gravelly)					
Salinity						None					
Texture (to	psoil/subsoilj)				SL/LS					
Average to	opsoil thickn	ess; Ty	pical rar	nge (cm)		0					
Average su	ubsoil thickn	ess; Ty	pical rai	nge (cm)		0					
Drainage o	class					Moderately \	Well				
Colour Trar	nsition (Cour	nt)				N/A					
Surface Sto	oniness					1 (<0.01%)					
				Ex	kample	Profile ^{1,3}					
Horizon	Depth (cm)		ield (ture	Consistency ^₄	-	tructure /grade/kind)	Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
Ck1	0-6	:	SL	Firm		-	2.5Y 3/1	-	-		
Ofb	6-12		-	-		-	-	-	-		
Ck2	12-24		LS	Loose		-	10YR 3/2	60	-		
			REPRES	ENTATIVE CHEMI	CAL AN	D PHYSICAL PR	ROPERTIES ^{1,3}				
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m	n) SAR	Organic Carbon (%)	Texture Class	Bulk Density (g/cm ³)		
Ck1	6	47	7.47	29	0.73	<0.10	-	SANDY LOAM	1.55		
Ofb	6	150	7.22	-	0.93	N/A	16	-	-		
Ck2	12	50	7.58	38	0.73	0.15	-	LOAMY SAND	1.5		
² Based on	'		ot matcl	n the Representa	ative Cł	nemical and P	hysical Properti	es for all parame	eters.		

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-13 Characteristics of the Gleysol Coarse (ZGC) Map Units

Soil Classifi	cation					Orthic or Re	go Humic Gleys	ol			
Soil Correla	ation Area					8					
Parent ma	terial and Te	extural	Group			Fluvial (Medium to Very Coarse)					
Salinity						None					
Texture (to	psoil/subsoil)				L/L					
Average to	opsoil thickn	ess; Ty	pical rar	nge (cm)		32.1; 14 to 7	0				
Average s	ubsoil thickr	iess; Ty	pical rai	nge (cm)		14; 0 to 32					
Drainage o	class					Poor					
Colour Tran	nsition (Cou	nt)				Good (2), Fa	air (4), Poor (2)				
Surface Sto	oniness					1 to 2 (<0.01	to 3%)				
				Ex	kample l	Profile ^{1,3}					
Horizon	Depth (cm)	Field	Texture	Consistency₄	Structure (class/grade/kind)		Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast)		
LFH	16-0		-	-		-	-	-	-		
Ahkgj	0-40		L	Friable		-	10YR 2/1	-	C/M/D		
Ckg	40-100		L	Firm		- 2.5Y 3/2 - C/M/P					
			REPRI	ESENTATIVE CHE	MICAL A	ND PHYSICA	L PROPERTIES ^{1,3}				
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m) SAR	Organic Carbon (%)	Texture Class	Bulk Density ⁵ (g/cm ³)		
LFH	16	180	7.48	-	1.2	0.28	14	-			
Ahkgj	40	180	7.27	22	1.1	0.64	16	LOAM			
Ckg	60	53	7.52	29	2.5	0.15	-	LOAM			
NOTES: ¹ Inspectio ² Based on	n site SRKF10 9 profiles	6098					·				

³ The example profile may not match the Representative Chemical and Physical Properties for all parameters.

⁴ Consistence measurements are strongly influenced by soil moisture conditions and are subject to change

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

Attachment C Soils Data Attachment March 2018

Table C-14 Characteristics of the Reclaimed (ZREC) Map Units

Soil Classific	cation				N/A				
Soil Correla	tion Area				8				
Parent mat	erial and Tex	tural Gr	oup		Anthro Till (Fine		ver Glaciolacu	ustrine (Fine to V	ery Fine) o
Salinity					None				
Texture (top	osoil/subsoil)				Variou	s materials			
Average to	psoil thicknes	ss; Typic	al range:	(cm)	32				
Average su	Ibsoil thickne	ss; Typic	al range	(cm)	0				
Drainage c	lass				Variou	S			
Colour Tran	sition (Count)			Good	(1)			
Surface Sto	niness				1 (<0.0	1%)			
				Exam	ple Profile ^{1,3}	3			
Horizon	Depth (cm)	Field	Texture	Consistency ^₄		cture ade/kind)	Colour (hue value/ chroma)	Coarse Fragment Content (%)	Mottles (contrast
Ар	0-20		L	Friable	M/F	/GR	10YR 2/1	0	-
Ah	20-32		L	Firm	M/F	/GR	10YR 2/1	0	-
Ck	32-120	ł	HC	Firm	N	IA	2.5Y 4/3	3	-
		RE	PRESENTA	TIVE CHEMICAL	AND PHYSI	CAL PROPE	RTIES ^{1,3}		
Master Horizon	Average Thickness ² (cm)	Sat (%)	pH (CaCl₂)	Calcium Carbonate Equivalent (%)	EC (ds/m)	SAR	Organic Carbon (%)	Texture Class	Bulk Density₅ (g/cm³)
MINk1	20	110	7.24	4.2	0.33	0.32	7.3	L	
MINk2	12	-	-	-	-	-	-	-	-
Ck	88	65	7.88	33	2.2	1.8	-	HC	
² Based on	•		match the	e Representativ	e Chemical	and Physic	al Properties	for all parameter	ors

⁵ Bulk Density measurements are from the Agrasid Database (2000)

N/A = Not applicable

- = No data collected

Attachment C Soils Data Attachment March 2018

SOIL HORIZON ATTACHMENT C.2

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRBL16001	1	Lower Subsoil	Ck	0	11	М	Friable	2.5Y 4/2	-	M/F/SB	fSL	-	S	-	-
	2	Topsoil	Ahgjkb	11	22	М	Friable	10YR 2/2	-	W/F/SB	fSL	C/M/D	S	-	-
	3	Lower Subsoil	Ckgj	22	30	М	Friable	2.5Y 3/2	-	MA	fSL	M/M/D	S	-	-
	4	Topsoil	Ahgjkb	30	58	М	Friable	10YR 2/1	-	MA	fSL	C/M/D	S	-	-
	5	Lower Subsoil	Ckgj	58	100	М	Friable	2.5Y 4/2	1	MA	fSL	C/F/F	S	-	-
SRBL16002	1	Topsoil	Ahjk	0	18	М	Friable	10YR 4/2	-	W/M/SB	LfS	-	S	-	-
	2	Upper Subsoil	CAkgj	18	38	М	Friable	10YR 5/2	-	MA	fSL	C/M/D	S	-	-
	3	Lower Subsoil	Ckgj	38	100	М	Friable	2.5Y 4/2	-	MA	LfS	C/M/D	S	-	-
SRBL16003	1	Topsoil	Ahk	0	29	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	S	SRBL16003-Ahk	Y
	2	Lower Subsoil	Ck	29	60	М	Friable	10YR 4/1	-	MA	SiL	-	S	SRBL16003-Ck	Y
	3	Lower Subsoil	Ckgj	60	100	М	Friable	2.5Y 4/2	-	MA	SiL	C/M/F	S	SRBL16003-Ckgj	Y
SRBL16004	1	Topsoil	Ah	0	27	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bt	27	43	М	Firm	2.5Y 4/2	-	S/F/SB	SiC	-	-	-	-
	3	Lower Subsoil	Ck	43	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRBL16005	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bt	21	42	М	Firm	10YR 4/2	-	M/F/SB	SiC	-	-	-	-
	3	Lower Subsoil	Ck	42	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRBL16006	1	Topsoil	Apk	0	20	М	Friable	2.5Y 2/1	-	W/M/SB	SiCL	-	М	-	-
	2	Topsoil	Ahkgj	20	41	М	Friable	2.5Y 2/1	-	W/M/SB	SiCL	F/M/F	М	-	-
	3	Lower Subsoil	Ckg	41	100	М	Firm	2.5Y 3/1	-	MA	SiCL	C/M/P	W	-	-
SRBL16007	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Topsoil	Ah	20	45	М	Friable	10YR 2/1	-	W/F/SB	SiCL	-	-	-	-
	3	Upper Subsoil	Bm	45	59	М	Friable	10YR 4/3	-	W/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	59	100	М	Firm	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRBL16008	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Topsoil	Ah	20	35	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	3	Upper Subsoil	Bm	35	57	М	Friable	10YR 4/3	-	M/F/SB	SiC	-	-	-	-
	4	Lower Subsoil	Ck	57	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRBL16009	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Topsoil	Ah	20	36	М	Friable	10YR 2/1	1	W/F/GR	SiCL	-	-	-	-
	3	Upper Subsoil	Bm	36	53	М	Firm	10YR 4/3	1	M/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	53	100	М	Firm	2.5Y 5/3	1	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRBL16010	1	Topsoil	Ahkg	0	50	W	Sticky	10YR 2/1	-	W/F/GR	SiCL	-	W	-	-
	2	Lower Subsoil	Ckg1	50	85	W	Sticky	2.5Y 4/1	-	MA	SiCL	-	W	-	-
	3	Lower Subsoil	Ckg2	85	100	W	Sticky	2.5Y 3/1	-	MA	SiC	-	W	-	-
SRBL16011	1	Topsoil	Ар	0	10	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	10	33	М	Firm	10YR 4/4	-	M/F/SB	SiC	-	-	-	-
	3	Lower Subsoil	BC	33	65	М	Firm	10YR 3/3	-	W/F/SB	SiC	-	-	-	-
	4	Lower Subsoil	Ck	65	80	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	-	-
	5	Lower Subsoil	llCk	80	100	М	Firm	2.5Y 5/3	2	MA	SiC	-	S	-	-
SRBL16012	1	Topsoil	Ah	0	24	М	Friable	10YR 2/1	1	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	24	42	М	Firm	10YR 4/3	1	W/F/GR	SiC	-	-	-	-
	3	Lower Subsoil	Ck	42	100	М	Firm	2.5Y 5/3	1	MA	SiC	-	S	-	-
SRBL16013	1	Topsoil	Ар	0	18	D	Slightly Hard	10YR 2/1	7	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bmk	18	37	D	Slightly Hard	10YR 4/3	7	M/M/SB	SiCL	-	М	-	-
	3	Lower Subsoil	BCk	37	55	D	Hard	2.5Y 4/3	7	W/M/SB	SiC	-	S	-	-
	4	Lower Subsoil	Ck	55	100	D	Very Hard	2.5Y 5/3	15	MA	SiC	-	S	-	-
SRBL16014	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	24	38	М	Friable	10YR 4/4	-	W/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BC	38	55	М	Friable	10YR 4/3	-	W/M/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	55	75	М	Firm	2.5Y 4/3	-	MA	SiC	-	S	-	-
	5	Lower Subsoil	llCk	75	100	М	Firm	2.5Y 3/2	3	MA	SiC	-	М	-	-
SRBL16015	1	Lower Subsoil	MINk	0	16	D	Slightly Hard	10YR 5/3	-	W/F/GR	LfS	-	S	-	-
	2	Topsoil	Ahkb	16	38	D	Slightly Hard	10YR 3/2	-	M/F/GR	fSL	-	S	-	-
	3	Lower Subsoil	Ck	38	90	D	Slightly Hard	10YR 5/3	-	MA	LfS	-	S	-	-
	4	Lower Subsoil	llCk	90	100	D	Slightly Hard	10YR 5/3	30	MA	LfS	-	S	-	-
SRBL16016	1	Lower Subsoil	Ck	0	12	М	Loose	10YR 4/2	-	MA	LS	-	S	-	-
	2	Topsoil	Ahkb	12	18	М	Friable	10YR 2/2	-	M/F/SB	fSL	-	S	-	-
	3	Lower Subsoil	llCk	18	55	М	Loose	10YR 3/3	60	MA	LS	-	S	-	-
SRBL16017	1	Topsoil	Ар	0	23	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	23	55	М	Firm	10YR 4/3	-	M/F/SB	SiC	-	-	-	-
	3	Lower Subsoil	llCk	55	100	М	Firm	2.5Y 4/2	2	МА	SiC	-	S	-	-
SRBL16018	1	Topsoil	Ahk	0	16	М	Firm	2.5Y 3/2	5	M/F/SB	SiC	-	S	-	-
	2	Upper Subsoil	CAk	16	35	М	Firm	2.5Y 4/2	10	M/F/SB	SiC	-	S	-	-
	3	Lower Subsoil	Ck	35	70	М	Firm	2.5Y 5/3	10	МА	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRBL16019	1	Topsoil	Ар	0	19	М	Friable	10YR 2/1	2	M/F/GR	CL	-	-	SRBL16019-Ap	Y
	2	Upper Subsoil	Bm	19	43	М	Friable	10YR 4/3	2	M/F/SB	С	-	-	SRBL16019-Bm	Y
	3	Lower Subsoil	Ck	43	100	М	Firm	2.5Y 4/3	2	MA	HC	-	Μ	SRBL16019-Ck	Y
SRBL16020	1	Topsoil	Oh	0	70	-	-	-	-	-	-	-	-	-	-
	2	Lower Subsoil	Cg	70	100	W	Sticky	N 3/1	5	MA	SiCL	-	-	-	-
SRBL16021	1	Topsoil	Ah	0	26	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	26	55	М	Firm	10YR 4/3	-	M/F/SB	SiC	-	-	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 4/3	-	MA	SiC	-	S	-	-
SRBL16022	1	Topsoil	Ahk	0	14	М	Friable	10YR 3/2	5	M/F/SB	SiCL	-	Μ	-	-
	2	Upper Subsoil	Bmk	14	31	М	Friable	2.5Y 4/3	7	W/F/SB	SiCL	-	Μ	-	-
	3	Lower Subsoil	BCk	31	65	М	Friable	2.5Y 5/3	7	W/M/SB	SiCL	-	S	-	-
	4	Lower Subsoil	Ck	65	100	М	Firm	2.5Y 5/3	7	MA	SiCL	-	S	-	-
SRBL16023	1	Topsoil	Ahk	0	18	М	Friable	10YR 2/1	-	M/F/SB	SiL	-	S	-	-
	2	Upper Subsoil	ACkgj	18	50	М	Friable	10YR 3/2	-	W/F/SB	SiCL	C/M/D	S	-	-
	3	Lower Subsoil	Ckg	50	100	М	Firm	2.5Y 4/3	5	MA	SiCL	A/M/P	S	-	-
SRBL16024	1	Topsoil	Ah	0	20	М	Friable	10YR 3/2	3	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btjk	20	55	М	Friable	2.5Y 4/3	3	M/F/SB	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 5/3	3	MA	SiCL	-	S	-	-
SRBL16025	1	Topsoil	Ah	0	26	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	26	42	М	Firm	10YR 4/4	1	W/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	42	100	М	Friable	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRBL16026	1	Topsoil	Ahk	0	14	М	Friable	10YR 3/2	25	W/M/SB	L	-	М	-	-
	2	Upper Subsoil	Bkg	14	35	М	Friable	2.5Y 4/1	70	M/F/SB	CL	A/M/P	S	-	-
	3	Lower Subsoil	Ckg	35	55	W	Sticky	2.5Y 4/2	70	MA	SCL	A/M/P	S	-	-
SRBL16027	1	Topsoil	Ahk	0	28	М	Friable	10YR 2/2	-	M/M/SB	vfSL	-	S	-	-
	2	Lower Subsoil	Ckgj1	28	45	М	Friable	2.5Y 4/3	-	MA	LfS	C/F/F	S	-	-
	3	Lower Subsoil	Ckgj2	45	100	М	Friable	2.5Y 4/3	-	MA	vfSL	C/M/D	S	-	-
SRBL16028	1	Lower Subsoil	Ck	0	30	М	Loose	2.5Y 4/3	80	MA	S	-	S	-	-
SRBL16029	1	Topsoil	Ahk	0	23	М	Friable	10YR 3/2	5	M/F/SB	SiCL	-	S	-	-
	2	Upper Subsoil	Bmk	23	55	М	Friable	10YR 4/3	7	M/M/BL	SiC	-	S	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 5/3	7	MA	SiC	-	S	-	-
SRBL16030	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	-	M/M/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	17	45	М	Firm	10YR 4/3	-	W/F/SB	SiCL	-	-	_	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	BC	45	65	М	Firm	10YR 4/3	-	MA	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	65	100	М	Friable	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRBL16031	1	Topsoil	Ah	0	22	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bgj	22	50	М	Friable	2.5Y 4/2	5	M/F/SB	SiCL	C/M/D	-	-	-
	3	Lower Subsoil	Ckgj	50	100	М	Firm	2.5Y 4/2	5	MA	SiC	C/M/F	S	-	-
SRBL16032	1	Topsoil	Ар	0	28	М	Firm	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	28	50	М	Friable	10YR 4/3	5	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	50	100	М	Friable	2.5Y 4/3	1	MA	SiCL	-	M	-	-
SRBL16033	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	1	M/M/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	22	45	М	Firm	2.5Y 4/1	1	W/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	45	100	М	Firm	2.5Y 4/2	1	MA	SiC	-	S	-	-
SRBL16034	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	22	47	М	Firm	10YR 4/3	2	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	47	100	М	Firm	2.5Y 4/2	2	MA	SiC	-	М	-	-
SRBL16035	1	Topsoil	Oh	10	0	-	Friable	-	-	-	-	-	-	-	-
	2	Topsoil	Ahk	0	27	М	Firm	10YR 2/1	-	M/F/GR	SiL	-	S	-	-
	3	Upper Subsoil	Bkg	27	45	М	Firm	2.5Y 4/1	-	W/F/GR	SiCL	C/M/D	М	-	-
	4	Lower Subsoil	llCkg	45	75	М	Firm	2.5Y 5/2	50	MA	SiCL	A/M/D	W	-	-
SRBL16036	1	Topsoil	Ah	0	34	М	Friable	10YR 2/1	2	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bmk	34	55	М	Friable	10YR 4/3	2	M/F/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ck	55	70	М	Firm	2.5Y 5/3	2	MA	SiCL	-	S	-	-
SRBL16037	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	24	55	М	Friable	10YR 4/3	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	55	90	М	Firm	2.5Y 4/2	-	MA	SiC	-	М	-	-
	4	Lower Subsoil	llCk	90	100	М	Firm	2.5Y 5/3	5	MA	SiCL	-	S	-	-
SRBL16038	1	Topsoil	Ahk	0	39	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	W	-	-
	2	Upper Subsoil	Bmk	39	55	М	Friable	2.5Y 4/3	-	M/F/SB	SiCL	-	W	-	-
	3	Lower Subsoil	Ckgj	55	100	М	Friable	2.5Y 5/3	-	МА	SiCL	F/F/F	S	-	-
SRBL16039	1	Topsoil	Ah	0	33	М	Friable	10YR 2/1	-	W/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bgj	33	50	М	Friable	2.5Y 4/3	-	W/F/SB	SiC	C/F/F	-	-	-
	3	Lower Subsoil	Ckgj	50	80	М	Firm	2.5Y 5/3	-	МА	SiC	C/F/D	S	-	-
SRBL16040	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	1	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	27	48	М	Friable	10YR 4/3	5	M/F/SB	SiCL	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	Ck	48	100	М	Firm	2.5Y 5/3	5	MA	SiC	-	S	-	-
SRBL16041	1	Topsoil	Ар	0	21	D	Slightly Hard	10YR 2/1	1	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	21	50	М	Friable	10YR 4/3	3	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BCk	50	65	М	Friable	10YR 3/3	3	W/F/SB	SiCL	-	М	-	-
	4	Lower Subsoil	Ck	65	100	D	Hard	2.5Y 5/3	1	MA	SiC	-	S	-	-
SRBL16042	1	Topsoil	Ahk	0	26	М	Friable	10YR 2/1	-	W/F/GR	SiCL	-	М	-	-
	2	Upper Subsoil	CAkgj	26	45	М	Friable	2.5Y 6/1	-	W/F/SB	SiL	-	S	-	-
	3	Lower Subsoil	Ckg	45	100	М	Friable	2.5Y 4/3	-	MA	SiCL	-	S	-	-
SRBL16043	1	Topsoil	Ah	0	29	М	Friable	10YR 2/1	-	W/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	29	55	М	Friable	2.5Y 4/3	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 4/2	-	MA	SiCL	-	S	-	-
SRBL16044	1	Topsoil	Oh	18	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ah	0	6	М	Friable	10YR 2/1	-	W/F/GR	SiCL	-	-	-	-
	3	Upper Subsoil	Bg	6	30	М	Friable	2.5Y 4/3	5	M/F/SB	SiCL	C/M/D	-	-	-
	4	Lower Subsoil	Ckg	30	82	М	Firm	2.5Y 5/3	5	MA	SiC	C/F/P	S	-	-
SRBL16045	1	Topsoil	Ah	0	21	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	21	38	М	Friable	10YR 4/3	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BC	38	55	М	Friable	2.5Y 4/3	1	W/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 4/3	1	MA	SiC	-	S	-	-
SRBL16046	1	Topsoil	Oh	6	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahgj	0	30	М	Friable	10YR 2/1	-	M/M/SB	SiCL	-	-	-	-
	3	Upper Subsoil	Bg	30	45	М	Friable	N 2/1	-	M/F/SB	SiCL	C/F/D	-	-	-
	4	Lower Subsoil	Ckg	45	100	М	Firm	N 3/1	-	MA	SiC	C/F/D	М	-	-
SRBL16047	1	Topsoil	Ар	0	23	D	Slightly Hard	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	23	47	М	Friable	10YR 4/2	1	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	47	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	-	-
SRBL16048	1	Topsoil	Ар	0	23	D	Slightly Hard	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	23	44	М	Friable	10YR 4/2	2	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BCk	44	60	М	Friable	2.5Y 4/2	-	W/F/SB	SiCL	-	М	-	-
	4	Lower Subsoil	Ck	60	100	D	Hard	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRBL16049	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	W/M/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	25	53	М	Firm	10YR 4/2	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	53	80	М	Hard	2.5Y 4/2	-	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	4	Lower Subsoil	llCk	80	100	D	Firm	2.5Y 5/3	5	MA	SiC	-	S	-	-
SRBL16050	1	Topsoil	Ар	0	21	D	Slightly Hard	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	21	42	М	Friable	10YR 4/2	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BCk	42	60	М	Firm	2.5Y 4/2	-	M/F/SB	SiC	-	S	-	-
	4	Lower Subsoil	Ck	60	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRBL16051	1	Topsoil	Ар	0	23	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Lower Subsoil	Ck1	23	30	М	Friable	2.5Y 5/2	-	MA	SiL	-	S	-	-
	3	Topsoil	Ahkb1	30	48	М	Friable	10YR 2/1	-	MA	SiL	-	S	-	-
	4	Lower Subsoil	Ck2	48	65	М	Friable	2.5Y 5/2	-	MA	SiL	-	S	-	-
	5	Topsoil	Ahkb2	65	80	М	Friable	10YR 2/1	-	MA	SiL	-	S	-	-
	6	Lower Subsoil	Ckgj	80	100	М	Friable	2.5Y 4/2	-	MA	SiL	-	S	-	-
SRBL16052	1	Topsoil	Apk	0	22	М	Friable	10YR 2/1	-	W/F/GR	SiL	-	М	-	-
	2	Lower Subsoil	Ck	22	36	М	Friable	2.5Y 4/1	-	MA	SiL	-	S	-	-
	3	Topsoil	Ahkbgj	36	55	М	Friable	10YR 2/1	-	MA	SiL	C/F/D	S	-	-
	4	Lower Subsoil	Ckgj	55	100	W	Sticky	2.5Y 4/1	-	MA	SiL	C/F/D	S	-	-
SRBL16053	1	Topsoil	Apk	0	25	М	Friable	10YR 2/1	-	W/C/SB	SiCL	-	М	-	-
	2	Lower Subsoil	Ck	25	38	М	Friable	2.5Y 5/1	-	W/F/SB	SiCL	-	S	-	-
	3	Topsoil	Ahkb	38	48	М	Friable	2.5Y 2/1	-	M/M/PL	SiL	-	S	-	-
	4	Lower Subsoil	Ckgj	48	100	М	Friable	2.5Y 5/3	-	MA	SiL	-	S	-	-
SRKF16001	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bgj	20	45	М	Friable	2.5Y 4/1	5	S/C/SB	CL	C/F/D	-	-	-
	3	Lower Subsoil	вСдј	45	70	М	Firm	2.5Y 4/1	-	MA	CL	C/M/F	-	-	-
	4	Lower Subsoil	Ckg	70	120	М	Firm	2.5Y 4/2	-	MA	С	-	М	-	-
SRKF16002	1	Topsoil	Ар	0	19	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	SRKF16002 -Ap	Y
	2	Upper Subsoil	Bgj	19	44	М	Firm	2.5Y 4/3	-	S/C/SB	HC	C/M/D	-	SRKF16002 -Bgj	Y
	3	Lower Subsoil	Ckgj	44	110	М	Firm	2.5Y 4/2	-	MA	HC	-	М	SRKF16002 -Ckgj	Y
SRKF16003	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	4	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bgj	22	59	М	Firm	2.5Y 4/1	-	M/C/SB	С	C/F/F	-	-	-
	3	Lower Subsoil	Ckgj	59	120	М	Firm	2.5Y 4/2	5	MA	С	F/F/F	М	-	-
SRKF16004	1	Topsoil	Apk	0	9	М	Friable	2.5Y 3/1	10	M/M/GR	CL	-	S	-	-
	2	Upper Subsoil	Bmkgj	9	49	М	Firm	2.5Y 4/2	15	M/C/SB	С	C/M/F	S	-	-
	3	Lower Subsoil	Ck	49	105	D	Hard	2.5Y 4/1	12	MA	С	-	S	-	-
	4	Topsoil	Apkb	105	120	М	Firm	10YR 2/1	-	-	CL	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRKF16005	1	Topsoil	Apk	0	18	W	Sticky	2.5Y 2/1	-	-	SiCL	-	S	-	-
	2	Upper Subsoil	CAgjk	18	41	W	Sticky	2.5Y 4/1	-	MA	SiC	C/M/D	S	-	-
	3	Lower Subsoil	Ckgj	41	120	М	Firm	2.5Y 5/2	-	MA	С	C/F/F	S	-	-
SRKF16006	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/M/BL	CL	-	-	SRKF16006 -Ap	N
	2	Topsoil	Ah	20	31	М	Firm	10YR 2/1	-	M/M/BL	CL	-	-	-	-
	3	Upper Subsoil	Bt	31	56	М	Firm	10YR 3/2	-	S/M/BL	С	-	-	SRKF16006 -Bnj	N
	4	Lower Subsoil	Ck	56	100	М	Friable	2.5Y 4/2	-	MA	С	-	М	SRKF16006 -Ck	N
SRKF16007	1	Topsoil	Apk	0	30	М	Friable	10YR 2/1	-	M/M/GR	SiCL	-	М	-	-
	2	Upper Subsoil	Bgk	30	65	М	Friable	2.5Y 2/1	-	MA	SiL	-	М	-	-
	3	Lower Subsoil	llCkg	65	110	М	Friable	2.5Y 5/3	5	MA	SiL	-	S	-	-
SRKF16008	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bmk	27	63	М	Friable	10YR 4/3	-	M/M/SB	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	63	110	М	Firm	2.5Y 4/4	-	MA	SiCL	-	М	-	-
SRKF16009	1	Topsoil	Apk	0	26	М	Friable	10YR 2/1	-	M/M/SB	SiL	-	W	-	-
	2	Upper Subsoil	Bmkgj	26	55	М	Friable	2.5Y 4/1	-	M/C/SB	SiL	C/M/D	S	-	-
	3	Lower Subsoil	Ckg	55	110	М	Firm	2.5Y 5/3	-	MA	SiC	F/F/F	S	-	-
SRKF16010	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Topsoil	Ah	20	34	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	3	Upper Subsoil	Bgjk	34	63	М	Firm	10YR 3/2	-	M/C/SB	SiCL	F/M/D	М	-	-
	4	Lower Subsoil	llCkg	63	110	М	Friable	2.5Y 5/3	4	MA	CL	C/M/D	М	-	-
SRKF16011	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	-	M/C/GR	L	-	-	SRKF16011-Ap	N
	2	Upper Subsoil	Bmk	17	43	М	Friable	10YR 4/3	-	M/C/SB	CL	-	S	SRKF16011-Bmk	N
	3	Lower Subsoil	Ck	43	110	М	Firm	2.5Y 5/3	-	MA	CL	-	S	SRKF16011-Ck	N
SRKF16012	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	17	40	М	Firm	10YR 2/2	2	M/C/SB	С	-	-	-	-
	3	Lower Subsoil	Ck	40	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16013	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	SRKF16013-Ap	Y
	2	Topsoil	Ah	20	41	М	Firm	10YR 2/1	-	M/M/GR	L	-	-	SRKF16013-Ck	Y
	3	Lower Subsoil	Ck	41	110	М	Firm	2.5Y 4/3	3	MA	С	-	М	-	-
SRKF16014	1	Topsoil	Apk	0	26	М	Friable	10YR 2/1	-	M/M/GR	SiCL	-	W	-	-
	2	Upper Subsoil	Bmkgj	26	58	М	Friable	10YR 4/3	4	M/M/SB	SiCL	F/M/D	М	-	-
	3	Lower Subsoil	Ckg	58	110	М	Firm	2.5Y 5/3	-	MA	SiC	C/M/D	S	-	-
SRKF16015	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Upper Subsoil	Bm	22	39	М	Firm	10YR 3/3	-	M/C/SB	С	-	-	-	-
	3	Lower Subsoil	Ckgj	39	100	М	Firm	2.5Y 5/2	-	MA	С	C/M/D	S	-	-
SRKF16016	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	-	M/M/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bmk	28	42	М	Friable	10YR 4/2	-	M/F/GR	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	42	110	М	Firm	2.5Y 4/3	-	MA	CL	-	S	-	-
SRKF16017	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bmk	21	53	М	Friable	10YR 4/3	-	M/M/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ck	53	110	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16018	1	Water	W	10	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	-	Si	-	S	-	-
	3	Lower Subsoil	Ckg	20	70	М	Friable	2.5Y 3/1	-	MA	SiCL	-	VS	-	-
	4	Lower Subsoil	llCkg	70	100	М	Friable	2.5Y 6/2	5	МА	CL	C/M/P	VS	-	-
SRKF16019	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	22	49	М	Friable	10YR 4/3	-	M/M/GR	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	49	110	М	Firm	2.5Y 5/3	-	МА	SiC	-	S	-	-
SRKF16020	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	21	47	М	Firm	10YR 3/3	-	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	47	110	М	Firm	2.5Y 5/3	-	MA	С	-	S	-	-
SRKF16021	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	22	48	М	Firm	10YR 4/3	-	M/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	48	100	М	Firm	2.5Y 5/3	-	МА	SiC	-	S	-	-
SRKF16022	1	Topsoil	Apk	0	25	М	Firm	10YR 2/1	-	-	SiC	-	W	SRKF16022-Apk	N
	2	Lower Subsoil	Ckg	25	100	М	Firm	2.5Y 6/3	-	МА	SiC	C/F/P	М	SRKF16022-Ckg	N
SRKF16023	1	Topsoil	Ар	0	23	W	Sticky	10YR 2/1	-	-	SiL	-	-	-	-
	2	Upper Subsoil	Bm	23	56	М	Firm	10YR 4/3	-	M/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ckg	56	100	М	Firm	2.5Y 6/3	2	МА	SiC	F/F/F	S	-	-
SRKF16024	1	Water	W	10	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ар	0	20	М	Firm	10YR 2/1	-	-	CL	-	-	-	-
	3	Upper Subsoil	AC	20	35	М	Firm	2.5Y 3/1	-	-	CL	-	-	-	-
	4	Lower Subsoil	Ckg	35	60	М	Firm	2.5Y 5/2	-	МА	С	C/F/F	S	-	-
	5	Lower Subsoil	llCkg	60	75	М	Firm	2.5Y 4/2	35	MA	CL	-	S	-	-
	6	Lower Subsoil	lliCkg	75	100	М	Firm	2.5Y 4/3	-	MA	С	-	S	-	-
SRKF16025	1	Topsoil	Apk	0	20	М	Friable	-	-	M/M/GR	L	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Topsoil	Ahk	20	38	М	Friable	-	-	M/M/GR	L	-	S	-	-
	3	Upper Subsoil	Bmk	38	57	М	Friable	-	-	M/M/SB	SiCL	-	S	-	-
	4	Lower Subsoil	Ckgj	57	110	М	Firm	-	2	MA	SiC	C/M/D	S	-	-
SRKF16026	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	М	-	-
	2	Upper Subsoil	ACkg	20	80	W	Slightly Sticky	2.5Y 3/2	-	MA	SiL	-	М	-	-
	3	Lower Subsoil	Ckg	80	110	М	Firm	2.5Y 4/1	-	MA	С	C/F/F	Μ	-	-
SRKF16027	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	S	-	-
	2	Topsoil	Ahkg	20	31	М	Friable	10YR 2/1	-	M/M/SB	SiL	C/M/D	S	-	-
	3	Lower Subsoil	Ckg	31	80	М	Firm	2.5Y 3/1	-	MA	SiCL	C/M/D	S	-	-
	4	Lower Subsoil	llCkg	80	110	М	Firm	2.5Y 4/1	15	MA	SiC	C/M/P	S	-	-
SRKF16028	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bmkgj	25	54	М	Friable	2.5Y 3/2	-	M/M/SB	SiL	-	М	-	-
	3	Lower Subsoil	Ckg	54	100	W	Sticky	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRKF16029	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/M/GR	L	-	W	-	-
	2	Topsoil	Ahk	20	53	М	Friable	10YR 2/1	-	M/M/GR	CL	-	W	-	-
	3	Lower Subsoil	Ck	53	100	М	Firm	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRKF16030	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	21	44	М	Friable	10YR 4/3	-	M/M/SB	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	44	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16031	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Topsoil	Ah	20	40	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	3	Upper Subsoil	Bmk	40	75	М	Friable	10YR 4/3	-	M/M/SB	SiCL	-	М	-	-
	4	Lower Subsoil	Ck1	75	85	D	Soft	2.5Y 6/2	-	MA	Si	-	S	-	-
	5	Lower Subsoil	Ck2	85	110	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16032	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/M/GR	L	-	W	-	-
	2	Topsoil	Ah	20	36	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	36	68	М	Friable	10YR 4/3	-	M/C/SB	CL	-	-	-	-
	4	Lower Subsoil	Ck	68	110	М	Firm	2.5Y 5/3	-	MA	SiC	-	М	-	-
SRKF16033	1	Topsoil	Ah	0	36	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bmk	36	62	М	Friable	10YR 4/3	-	M/M/SB	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	62	100	М	Firm	2.5Y 6/3	-	MA	SiC	-	Μ	-	-
SRKF16034	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bm	25	64	М	Friable	10YR 4/2	-	W/M/SB	SiCL	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	Ck	64	110	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16035	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	-	-	-
	2	Topsoil	Ah	20	32	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	-	-	-
	3	Upper Subsoil	Bm	32	58	М	Friable	10YR 4/2	-	M/M/SB	CL	-	-	-	-
	4	Lower Subsoil	Ck	58	110	М	Firm	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRKF16036	1	Water	W	5	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Apk	0	30	W	Sticky	10YR 2/1	-	MA	SiCL	-	W	-	-
	3	Lower Subsoil	Ckg	30	100	М	Firm	2.5Y 6/3	-	MA	SiC	F/F/F	W	-	-
SRKF16037	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	20	33	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	33	47	М	Friable	10YR 3/3	-	M/M/SB	CL	-	-	-	-
	4	Lower Subsoil	Ck1	47	75	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	-	-
	5	Lower Subsoil	Ck2	75	110	D	Hard	2.5Y 6/3	-	MA	SiC	-	S	-	-
SRKF16039	1	Topsoil	Ар	0	23	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	23	43	М	Friable	10YR 3/3	-	M/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	43	100	М	Firm	2.5Y 6/3	-	MA	SiC	-	S	-	-
SRKF16040	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Topsoil	Ah	20	32	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	32	54	М	Friable	10YR 3/4	-	M/C/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	54	100	М	Firm	2.5Y 4/2	-	MA	SiCL	-	S	SRKF16040-Ck	Ν
SRKF16041	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bm	17	40	М	Friable	10YR 4/3	-	M/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ckgj	40	100	М	Firm	2.5Y 5/3	-	MA	SiC	C/F/D	S	-	-
SRKF16042	1	Water	W	10	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahg	0	20	W	Slightly Sticky	10YR 2/1	-	MA	SiL	C/M/D	-	-	-
	3	Upper Subsoil	ACg	20	70	М	Friable	2.5Y 2/1	-	MA	SiCL	C/M/D	-	-	-
	4	Lower Subsoil	llCkg	70	100	М	Firm	2.5Y 4/1	6	MA	SiL	F/M/F	-	-	-
SRKF16043	1	Topsoil	Ahkg	0	25	W	Slightly Sticky	10YR 2/1	-	-	SiL	C/M/D	М	-	-
	2	Upper Subsoil	ACkg	25	60	М	Friable	2.5Y 2/1	-	-	SiCL	C/M/D	М	-	-
	3	Lower Subsoil	Ckg	60	90	М	Firm	2.5Y 3/1	-	MA	SiCL	F/F/F	М	-	-
	4	Lower Subsoil	llCkg	90	120	М	Firm	2.5Y 4/1	5	MA	CL	F/F/F	S	-	-
SRKF16044	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	2	M/M/GR	L	-	-	-	-
	2	Topsoil	Ah	20	35	М	Friable	10YR 2/1	2	M/M/GR	L	-	-	SRKF16044-Ap	Ν

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Upper Subsoil	Bm	35	57	М	Friable	10YR 4/3	2	M/M/SB	CL	-	-	SRKF16044-Bm	Ν
	4	Lower Subsoil	Ck	57	100	М	Firm	2.5Y 4/3	-	MA	С	-	S	SRKF16044-Ck	Ν
SRKF16045	1	Topsoil	Apk	0	26	М	Friable	10YR 2/1	-	M/F/GR	L	-	М	-	-
	2	Upper Subsoil	Bmk	26	56	М	Friable	10YR 4/2	-	M/F/SB	SiL	-	М	-	-
	3	Lower Subsoil	Ck	56	100	М	Firm	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRKF16046	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bmk	25	69	М	Friable	10YR 5/2	-	W/M/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ck	69	100	М	Firm	2.5Y 6/3	-	MA	SiC	-	S	-	-
SRKF16048	1	Water	W	10	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahkg	0	20	W	Slightly Sticky	2.5Y 2/1	-	MA	SiL	C/M/P	W	-	-
	3	Upper Subsoil	ACkg	20	60	W	Sticky	2.5Y 3/2	-	MA	SiL	C/M/P	W	-	-
	4	Lower Subsoil	llCkg	60	120	М	Firm	2.5Y 4/1	-	MA	SiC	C/F/P	W	-	-
SRKF16049	1	Topsoil	MINk1	0	12	М	Friable	10YR 2/2	-	M/F/SB	SiL	-	S	-	-
	2	Upper Subsoil	MINk2	12	60	М	Friable	2.5Y 5/2	-	M/M/SB	CL	-	М	-	-
	3	Lower Subsoil	Ckg	60	100	W	Sticky	2.5Y 6/2	-	MA	SiC	-	М	-	-
SRKF16050	1	Topsoil	Apk	0	24	М	Friable	10YR 2/1	-	M/F/GR	L	-	W	-	-
	2	Upper Subsoil	Bmk	24	61	М	Friable	10YR 5/2	-	M/M/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ck	61	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	-	-
SRKF16051	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	W/M/GR	SiL	-	-	-	-
	2	Topsoil	Ah	20	49	М	Friable	10YR 2/1	-	W/M/GR	SiL	-	-	-	-
	3	Upper Subsoil	Bmk	49	56	М	Friable	10YR 3/3	-	M/M/SB	SiL	-	М	-	-
	4	Lower Subsoil	Ck	56	100	М	Firm	2.5Y 4/3	-	MA	SiCL	-	S	-	-
SRKF16052	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bm	25	36	М	Friable	10YR 3/2	-	M/M/SB	SiL	-	-	-	-
	3	Lower Subsoil	Ck1	36	80	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
	4	Lower Subsoil	Ck2	80	100	D	Hard	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16053	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	24	39	М	Friable	10YR 3/2	-	W/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	39	100	М	Firm	2.5Y 5/2	-	MA	SiCL	-	S	-	-
SRKF16054	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	1	M/M/GR	SiL	-	-	-	-
	2	Topsoil	Ah	20	42	М	Friable	10YR 2/1	1	W/M/GR	SiL	-	-	-	-
	3	Upper Subsoil	Bm	42	63	М	Friable	10YR 4/3	-	M/C/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	63	100	М	Firm	2.5Y 5/2	-	MA	SiCL	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRKF16055	1	Topsoil	Ар	0	29	-	-	10YR 2/1	3	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	29	54	-	-	10YR 4/3	-	W/C/SB	SiL	-	М	-	-
	3	Lower Subsoil	Ck	54	100	-	-	2.5Y 4/3	2	MA	CL	-	S	-	-
SRKF16056	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	28	43	М	Friable	10YR 3/2	-	M/M/SB	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	43	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16057	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	W	-	-
	2	Topsoil	Ahk	20	44	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	W	-	-
	3	Lower Subsoil	Ck	44	100	М	Firm	2.5Y 4/3	-	MA	SiC	-	М	-	-
SRKF16058	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bkgj	25	50	М	Friable	2.5Y 5/2	-	W/M/SB	SiL	F/C/F	М	-	-
	3	Lower Subsoil	Ckgj	50	100	М	Firm	2.5Y 6/3	2	MA	SiC	C/M/D	S	-	-
SRKF16059	1	Water	W	10	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahkg	0	15	W	Slightly Sticky	10YR 2/1	-	MA	SiCL	-	W	-	-
	3	Upper Subsoil	ACkg	15	35	W	Slightly Sticky	2.5Y 3/2	-	MA	SiCL	-	W	-	-
	4	Lower Subsoil	Ckg	35	100	М	Firm	2.5Y 6/3	4	MA	SiC	C/M/D	М	-	-
SRKF16060	1	Topsoil	Ар	0	29	М	Friable	10YR 2/1	1	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bmgj	29	51	М	Friable	2.5Y 4/3	-	M/M/SB	SiCL	C/M/F	-	-	-
	3	Topsoil	Ahkb	51	65	М	Friable	2.5Y 2/1	-	MA	L	-	W	-	-
	4	Lower Subsoil	llCkgj	65	100	М	Firm	2.5Y 5/2	2	MA	С	C/M/D	М	-	-
SRKF16061	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	30	58	М	Friable	10YR 4/3	-	M/C/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	58	100	М	Firm	2.5Y 4/2	-	MA	CL	-	S	-	-
SRKF16062	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/M/GR	LfS	-	-	-	-
	2	Upper Subsoil	Bmk	30	56	М	Friable	10YR 4/3	-	W/M/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ck	56	100	М	Firm	2.5Y 4/3	-	MA	SiCL	-	S	-	-
SRKF16063	1	Topsoil	Apkg	0	27	М	Friable	10YR 2/1	-	M/M/GR	SiCL	-	W	-	-
	2	Upper Subsoil	Bkg	27	47	М	Friable	2.5Y 4/3	-	-	SiCL	C/F/P	W	-	-
	3	Lower Subsoil	Ckg	47	100	М	Firm	2.5Y 4/1	3	MA	SiC	F/F/F	М	-	-
SRKF16064	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	W	-	-
	2	Topsoil	Ahk	20	38	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	W	-	-
	3	Upper Subsoil	Bmkgj	38	52	М	Friable	2.5Y 3/2	-	W/M/SB	SiL	-	W	-	-
l	4	Lower Subsoil	Ckgj	52	100	М	Firm	2.5Y 6/3	-	MA	SiCL	-	М	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRKF16065	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/M/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bmk	30	55	М	Friable	2.5Y 4/3	2	M/F/SB	SiCL	-	Μ	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16066	1	Water	W	15	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Apkg	0	15	М	Friable	10YR 2/1	-	MA	SiC	C/M/D	W	-	-
	3	Upper Subsoil	Bkg	15	35	М	Firm	2.5Y 4/3	-	MA	SiC	C/F/P	W	-	-
	4	Lower Subsoil	Ckg1	35	55	М	Firm	2.5Y 5/3	-	MA	SiC	C/M/D	W	-	-
	5	Lower Subsoil	Ckg2	55	100	М	Friable	2.5Y 5/3	10	MA	SC	C/M/D	W	-	-
SRKF16067	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	W	-	-
	2	Topsoil	Ahk	20	37	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	W	-	-
	3	Lower Subsoil	Ck	37	100	М	Firm	2.5Y 5/3	-	MA	CL	-	М	-	-
SRKF16068	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/M/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bmk	27	47	М	Friable	10YR 4/3	2	W/M/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ck	47	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	-	-
SRKF16069	1	Water	W	3	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Apk	0	25	W	Sticky	10YR 2/1	-	MA	SiL	C/M/F	W	-	-
	3	Upper Subsoil	ACk	25	45	W	Sticky	2.5Y 3/2	-	MA	SiL	C/F/D	W	-	-
	4	Lower Subsoil	Ckg	45	100	М	Firm	2.5Y 5/3	-	MA	SiCL	C/F/D	М	-	-
SRKF16070	1	Topsoil	Apk	0	24	М	Friable	10YR 2/1	-	M/C/GR	SiCL	F/F/F	М	-	-
	2	Upper Subsoil	Bmkgj	24	46	М	Friable	2.5Y 4/3	-	-	CL	C/M/D	S	-	-
	3	Lower Subsoil	Ckg	46	100	М	Firm	2.5Y 6/3	-	MA	SiC	C/F/D	S	-	-
SRKF16071	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	3	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	24	43	М	Friable	10YR 3/2	1	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	43	100	М	Firm	2.5Y 4/3	5	MA	CL	-	S	-	-
SRKF16072	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	21	55	М	Friable	10YR 4/3	-	W/F/SB	CL	-	М	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 4/3	2	MA	CL	-	S	-	-
SRKF16073	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bmkgj	22	47	М	Friable	2.5Y 4/2	-	M/M/SB	SiL	F/F/F	М	-	-
	3	Lower Subsoil	Ckgj	47	100	М	Firm	2.5Y 4/3	-	MA	SiC	C/M/D	М	-	-
SRKF16074	1	Topsoil	Ар	0	19	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bmkgj	19	44	М	Friable	2.5Y 4/3	-	W/M/SB	CL	F/M/D	Μ	-	-
	3	Lower Subsoil	Ckg	44	100	М	Firm	2.5Y 4/2	-	MA	С	C/M/D	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRKF16075	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Topsoil	Ah	20	36	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	3	Upper Subsoil	Bmk	36	49	М	Friable	10YR 4/4	2	W/M/SB	SiCL	-	М	-	-
	4	Lower Subsoil	Ckgj	49	100	М	Firm	2.5Y 4/3	2	MA	SiC	C/M/F	VS	-	-
SRKF16076	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bmk	22	43	М	Friable	2.5Y 3/2	15	M/F/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ckgj	43	100	М	Firm	2.5Y 4/2	10	MA	С	C/F/D	VS	-	-
SRKF16077	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	1	M/F/GR	SiL	-	-	-	-
	2	Topsoil	Ah	27	44	М	Friable	10YR 2/1	1	M/F/GR	SiL	-	-	-	-
	3	Upper Subsoil	Bm	44	80	D	Hard	10YR 4/4	2	W/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	80	100	D	Hard	10YR 6/1	2	МА	SiCL	-	S	-	-
SRKF16078	1	Topsoil	Ар	0	23	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	23	54	М	Friable	10YR 4/3	2	M/C/SB	SiC	-	-	-	-
	3	Lower Subsoil	Ck	54	100	М	Firm	2.5Y 4/2	-	MA	С	-	S	-	-
SRKF16079	1	Topsoil	Apk	0	27	М	Friable	10YR 2/2	8	M/M/GR	L	-	М	-	-
	2	Topsoil	Ahk	27	44	М	Friable	10YR 2/3	-	M/M/GR	L	-	М	-	-
	3	Upper Subsoil	Bmk	44	59	М	Friable	10YR 3/3	10	M/M/SB	SiCL	-	М	-	-
	4	Lower Subsoil	Ck	59	100	D	Hard	2.5Y 4/2	10	МА	SiCL	-	S	-	-
SRKF16080	1	Topsoil	Ар	0	18	М	Friable	10YR 2/1	5	M/M/GR	CL	-	-	SRKF16080-Ap	Y
	2	Upper Subsoil	Bmk	18	45	М	Firm	10YR 4/3	1	M/M/SB	НС	-	S	SRKF16080-Bmk	Y
	3	Lower Subsoil	Ck	45	100	D	Hard	2.5Y 4/2	5	MA	НС	-	S	SRKF16080-Ck	Y
SRKF16081	1	Topsoil	Apk	0	25	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	S	-	-
	2	Upper Subsoil	Bmkgj	25	47	М	Friable	2.5Y 4/1	-	W/C/SB	SiCL	-	М	-	-
	3	Lower Subsoil	Ckg	47	100	W	Sticky	2.5Y 5/2	-	МА	SiCL	C/M/D	S	-	-
SRKF16082	1	Water	W	5	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Apkg	0	30	W	Sticky	10YR 2/1	-	MA	SiCL	-	W	-	-
	3	Lower Subsoil	Ckg	30	100	М	Firm	2.5Y 4/1	-	MA	SiCL	C/M/P	W	-	-
SRKF16083	1	Topsoil	Apk	0	25	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	W	-	-
	2	Topsoil	Ahk	25	40	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	W	-	-
	3	Lower Subsoil	Ckg1	40	100	W	Sticky	2.5Y 3/1	-	MA	SiL	-	W	-	-
	4	Lower Subsoil	Ckg2	100	120	М	Firm	2.5Y 4/1	-	MA	SC	C/M/P	W	-	-
SRKF16084	1	Topsoil	Apk	0	19	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	W	-	-
1	2	Upper Subsoil	Bmkgj	19	39	М	Friable	2.5Y 3/2	-	M/M/SB	SiCL	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	Ckgj1	39	60	W	Sticky	2.5Y 5/3	-	MA	SiCL	C/C/D	S	-	-
	4	Lower Subsoil	Ckgj2	60	100	М	Firm	2.5Y 4/3	-	MA	SiC	C/M/D	S	-	-
SRKF16085	1	Topsoil	Ар	0	25	М	Friable	-	-	M/M/GR	L	-	-	-	-
	2	Topsoil	Ah	25	39	М	Friable	-	-	M/M/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	39	53	М	Friable	-	2	M/M/SB	CL	-	-	-	-
	4	Lower Subsoil	Ck	53	100	М	Firm	-	-	MA	С	-	М	-	-
SRKF16086	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	2	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	26	55	М	Friable	10YR 3/3	1	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 4/3	7	MA	SCL	-	S	-	-
SRKF16087	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	30	59	М	Friable	10YR 2/2	-	M/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	59	100	М	Firm	2.5Y 4/2	5	MA	SiC	-	VS	-	-
SRKF16088	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	2	M/M/GR	CL	-	-	-	-
	2	Topsoil	Ah	25	50	М	Friable	10YR 2/1	2	M/M/GR	CL	-	-	-	-
	3	Upper Subsoil	Bmk	50	75	М	Friable	10YR 4/3	3	M/M/SB	CL	-	W	-	-
	4	Lower Subsoil	Ck	75	100	М	Firm	2.5Y 4/2	5	MA	С	-	S	-	-
SRKF16089	1	Topsoil	Ар	0	16	М	Friable	10YR 2/1	4	W/M/SB	L	-	-	-	-
	2	Upper Subsoil	Bmk	16	41	М	Friable	10YR 4/4	20	M/M/SB	CL	-	W	-	-
	3	Lower Subsoil	Ck	41	100	М	Firm	2.5Y 4/2	1	MA	С	-	М	-	-
SRKF16090	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	2	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	28	42	М	Friable	10YR 4/4	5	M/F/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	42	100	М	Firm	2.5Y 4/3	2	MA	С	-	М	-	-
SRKF16091	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	2	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	28	55	М	Friable	10YR 4/4	1	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 4/3	1	MA	С	-	М	-	-
SRKF16092	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	2	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	28	60	М	Firm	10YR 4/3	1	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	60	100	М	Firm	2.5Y 4/3	-	MA	SiC	-	М	-	-
SRKF16093	1	Topsoil	Ар	0	18	М	Friable	10YR 4/3	5	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	18	47	М	Friable	2.5Y 4/3	5	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	47	100	М	Firm	10YR 2/1	-	MA	SiC	-	М	-	-
SRKF16094	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	1	M/M/SB	L	-	-	-	
	2	Upper Subsoil	Bm	25	48	М	Friable	10YR 4/3	3	M/M/SB	CL	-	-	-	

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	Ck	48	100	М	Firm	2.5Y 4/3	-	МА	SiC	-	М	-	-
SRKF16095	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	2	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	17	33	М	Friable	10YR 4/4	10	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	33	100	М	Firm	2.5Y 4/3	1	MA	SiC	-	М	-	-
SRKF16096	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	2	M/M/SB	L	-	-	-	-
	2	Upper Subsoil	Bm	17	39	М	Friable	10YR 4/3	-	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	39	100	М	Firm	2.5Y 4/3	-	MA	SiC	-	М	-	-
SRKF16097	1	Topsoil	Ah	0	15	М	Friable	10YR 2/2	-	M/F/GR	SL	-	-	SRKF16097-Ah	Y
	2	Lower Subsoil	Ck	15	35	М	Firm	2.5Y 6/1	60	MA	SL	-	W	SRKF16097-Ck	Y
SRKF16098	1	Duff	LFH	16	0	-	-	-	-	-	-	-	-	SRKF16098-Ahkgj	Y
	2	Topsoil	Ahkgj	0	40	М	Friable	10YR 2/1	-	-	L	C/M/D	W	SRKF16098-Ckg	Y
	3	Lower Subsoil	Cskg	40	100	М	Firm	2.5Y 3/2	-	MA	L	C/M/P	W	SRKF16098-LFH	Y
SRKF16100	1	Duff	LFH	3	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahk	0	29	М	Friable	10YR 2/1	1	W/M/GR	SL	-	S	-	-
	3	Upper Subsoil	Bmkgj	29	49	М	Very Friable	10YR 4/3	-	W/M/SB	LS	C/C/F	S	-	-
	4	Lower Subsoil	Ckg	49	100	М	Friable	2.5Y 4/3	100	MA	LS	C/M/F	S	-	-
	5	Lower Subsoil	IIC	100	110	М	-	-	-	MA	-	-	-	-	-
SRKF16101	1	Duff	LFH	2	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahk	0	36	М	Friable	10YR 2/2	-	M/F/GR	SL	-	S	-	-
	3	Upper Subsoil	Bkgj	36	50	М	Friable	2.5Y 3/2	-	W/M/SB	LS	C/M/F	S	-	-
	4	Lower Subsoil	Ckgj	50	100	М	Friable	2.5Y 4/3	-	MA	LS	F/M/D	S	-	-
SRKF16102	1	Duff	LFH	4	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahk	0	13	М	Friable	10YR 2/2	-	M/F/GR	SL	-	S	-	-
	3	Upper Subsoil	Bmk	13	40	М	Friable	2.5Y 4/3	-	W/F/SB	LS	F/M/F	S	-	-
	4	Lower Subsoil	Ckg	40	60	М	Friable	2.5Y 4/2	-	MA	LS	F/M/P	S	-	-
	5	Lower Subsoil	llCkg	60	100	М	Friable	2.5Y 4/2	50	MA	LS	-	S	-	-
SRKF16103	1	Topsoil	Ahk	0	16	М	Loose	10YR 3/2	-	-	S	-	S	-	-
	2	Lower Subsoil	Ck	16	25	М	Loose	10YR 3/3	90	SG	S	-	S	-	-
SRKF16104	1	Topsoil	Ahk	0	28	М	Loose	-	-	-	S	-	S	-	-
	2	Upper Subsoil	Bgk	28	60	М	Friable	-	-	W/M/SB	SL	C/C/D	S	-	-
	3	Lower Subsoil	llCkg	60	100	М	Loose	-	90	SG	S	F/C/D	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRKF16105	1	Topsoil	Ahk	0	27	М	Very Friable	10YR 2/2	1	M/M/GR	LS	-	S	-	-
	2	Upper Subsoil	Bmkgj	27	56	М	Very Friable	2.5Y 3/2	-	W/M/SB	LS	C/M/D	S	-	-
	3	Lower Subsoil	llCkgj	56	100	М	Very Friable	2.5Y 4/3	65	MA	LS	F/M/F	S	-	-
SRKF16107	1	Organic	Om	0	80	-	-	-	-	-	-	-	-	SRKF16107-Om	Y
	2	Lower Subsoil	Ckg	80	120	W	Slightly Sticky	2.5Y 4/1	60	MA	SiL	-	W	SRKF16107-Ckg	Y
SRKF16108	1	Organic	Om	30	0	-	-	-	-	-	-	-	-	-	-
	2	Lower Subsoil	Ckg	0	80	W	Slightly Sticky	2.5Y 4/1	-	MA	SiL	C/M/D	W	-	-
	3	Lower Subsoil	llCkg	80	100	М	Friable	2.5Y 4/1	-	MA	SL	-	W	-	-
SRKF16109	1	Duff	FH	3	0	-	-	-	-	-	-	-	-	-	-
	2	Water	W	8	3	-	-	-	-	-	-	-	-	-	-
	3	Topsoil	Ahk	0	15	W	Slightly Sticky	10YR 2/2	-	MA	SL	-	W	-	-
	4	Lower Subsoil	Ckg	15	100	W	Slightly Sticky	2.5Y 4/1	-	MA	SL	C/C/D	W	-	-
SRKF16110	1	Topsoil	Apkg	0	20	W	Sticky	2.5Y 3/2	5	-	SiCL	C/M/D	W	-	-
	2	Topsoil	Ahkg	20	40	W	Sticky	2.5Y 3/2	5	-	SiCL	C/M/D	W	-	-
	3	Lower Subsoil	Ckg	40	100	М	Firm	2.5Y 4/1	-	MA	SiC	C/M/D	М	-	-
SRKF16111	1	Topsoil	Ар	0	19	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	19	47	М	Friable	2.5Y 4/3	-	W/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	47	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	-	-
SRKF16112	1	Topsoil	Apk	0	17	М	Friable	10YR 3/1	-	S/M/SB	SiC	-	W	-	-
	2	Upper Subsoil	Bmkgj	17	53	М	Friable	2.5Y 4/3	2	S/M/SB	SiC	F/F/F	W	-	-
	3	Lower Subsoil	Ckgj	53	100	М	Firm	2.5Y 4/2	1	MA	SiC	C/M/F	М	-	-
SRKF16113	1	Duff	LFH	2	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahk	0	12	М	Friable	2.5Y 2/1	-	s/m/gr	SiC	-	W	-	-
	3	Upper Subsoil	Bmk	12	39	М	Friable	2.5Y 4/3	-	M/M/SB	SiC	-	W	-	-
	4	Lower Subsoil	Ck	39	100	М	Firm	2.5Y 4/2	1	MA	SiC	-	М	-	-
SRKF16114	1	Lower Subsoil	Ck	0	30	М	Loose	10YR 4/3	70	SG	S	-	S	-	-
SRKF16115	1	Topsoil	Ahk	0	16	М	Friable	10YR 2/2	15	W/M/GR	LS	-	S	-	-
	2	Lower Subsoil	Ck	16	20	М	Firm	10YR 4/2	75	SG	S	-	S	-	-
SRKF16116	1	Lower Subsoil	Ck	0	30	М	Loose	10YR 4/3	90	SG	S	-	S	-	-
SRKF16117	1	Topsoil	Apk	0	23	М	Friable	10YR 2/1	-	M/M/GR	L	-	М	-	-
	2	Upper Subsoil	Bmk	23	49	М	Friable	10YR 4/3	3	M/M/SB	CL	-	S	-	-
	3	Lower Subsoil	Ck	49	100	М	Firm	2.5Y 4/3	-	MA	SiC	-	S	-	-
SRKF16118	1	Topsoil	Apks	0	25	М	Friable	10YR 2/1	-	M/M/GR	SiL	-	W	SRKF16118-Apk	Y

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Upper Subsoil	Bg	25	46	М	Friable	2.5Y 4/1	-	M/M/SB	HC	A/F/P	W	SRKF16118-Bgk	Y
	3	Lower Subsoil	Ckg	46	100	М	Firm	2.5Y 4/2	1	MA	HC	C/M/D	М	SRKF16118-Ckj	Y
SRKF16119	1	Topsoil	Ahk	0	36	М	Friable	10YR 2/1	1	M/M/GR	L	-	М	-	-
	2	Upper Subsoil	Bmk	36	53	М	Friable	10YR 4/3	5	M/M/SB	SCL	-	М	-	-
	3	Lower Subsoil	Ckg	53	100	М	Firm	2.5Y 4/3	15	MA	SCL	C/M/P	VS	-	-
SRKF16120	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	22	52	М	Friable	10YR 4/3	-	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	52	100	М	Firm	2.5Y 4/3	5	MA	CL	-	W	-	-
SRKF16121	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/M/GR	CL	-	-	-	-
	2	Upper Subsoil	Bg	25	43	М	Friable	2.5Y 6/2	-	M/M/SB	SiCL	C/M/P	-	-	-
	3	Lower Subsoil	Ckg	43	100	М	Firm	2.5Y 5/3	1	MA	С	C/M/D	М	-	-
SRKF16122	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	24	47	М	Friable	10YR 4/3	-	M/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	47	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	М	-	-
SRKF16123	1	Topsoil	Apk	0	25	М	Friable	10YR 2/2	-	M/F/GR	SL	-	S	-	-
	2	Topsoil	Ahk	25	41	М	Friable	10YR 2/1	2	M/F/GR	SL	-	S	-	-
	3	Upper Subsoil	Bmk	41	55	М	Friable	10YR 4/4	2	W/F/SB	fSL	-	S	-	-
	4	Lower Subsoil	Ck	55	100	М	Friable	2.5Y 4/3	2	MA	fSL	-	S	-	-
SRKF16124	1	Topsoil	Ahk	0	18	М	Friable	10YR 2/2	-	M/M/GR	fSL	-	S	-	-
	2	Upper Subsoil	Bmk	18	24	М	Friable	10YR 4/4	-	W/M/SB	fSL	-	S	-	-
	3	Lower Subsoil	llCk	24	30	М	Friable	10YR 4/3	70	SG	LS	-	S	-	-
SRKF16125	1	Lower Subsoil	Ck	0	25	М	Friable	2.5Y 4/2	2	M/M/SB	fSL	-	S	-	-
	2	Topsoil	Ahkb	25	30	М	Friable	10YR 2/1	2	W/M/SB	fSL	-	S	-	-
	3	Upper Subsoil	Bmkb	30	50	М	Friable	10YR 4/4	2	W/M/SB	fSL	-	S	-	-
	4	Lower Subsoil	llCk	50	70	М	Loose	2.5Y 4/3	25	SG	S	-	S	-	-
SRKF16126	1	Organic	Om	0	70	-	-	-	-	-	-	-	-	-	-
	2	Lower Subsoil	Ckg	70	100	М	Firm	5Y 3/1	-	MA	SiC	-	S	-	-
SRKF16127	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	-	M/F/GR	Si	-	-	-	-
	2	Topsoil	Ah	17	21	М	Friable	10YR 2/1	-	M/F/GR	Si	-	-	-	-
	3	Upper Subsoil	Btj	21	65	М	Friable	10YR 4/2	-	M/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	65	100	М	Firm	2.5Y 3/2	-	MA	SiCL	-	-	-	-
SRKF16128	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	21	40	М	Firm	2.5Y 4/2	-	M/F/SB	SiC	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	Ckgj	40	100	М	Firm	2.5Y 5/3	-	MA	Si	-	S	-	-
SRKF16129	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	2	M/F/GR	SiCL	-	-	-	-
	2	Topsoil	Ah	20	43	М	Firm	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	3	Lower Subsoil	IIC	43	100	М	Firm	2.5Y 4/3	-	MA	С	-	-	-	-
SRKF16130	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/F/SB	SiL	-	-	-	-
	2	Upper Subsoil	Bmk	22	47	М	Firm	10YR 4/3	-	M/M/SB	SiC	-	S	-	-
	3	Lower Subsoil	Ck	47	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16131	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	28	46	М	Friable	10YR 4/3	-	W/M/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	46	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16132	1	Topsoil	Apk	0	23	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	W	-	-
	2	Upper Subsoil	Bmk	23	44	М	Friable	10YR 4/4	-	M/F/SB	SiCL	-	W	-	-
	3	Lower Subsoil	BCk	44	70	М	Firm	10YR 5/3	-	MA	SiC	-	W	-	-
	4	Lower Subsoil	Ck	70	100	М	Firm	2.5YR 5/3	-	MA	SiC	-	S	-	-
SRKF16133	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	2	M/F/GR	SiCL	-	W	-	-
	2	Topsoil	Ahk	20	42	М	Friable	10YR 2/1	8	W/F/GR	SiCL	-	W	-	-
	3	Upper Subsoil	Bmk	42	70	М	Friable	10YR 4/3	2	M/M/SB	SiCL	-	W	-	-
	4	Lower Subsoil	llCk	70	100	М	Firm	2.5Y 5/3	2	MA	SiC	-	S	-	-
SRKF16134	1	Topsoil	Ah	0	31	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bm	31	56	М	Friable	10YR 4/4	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	С	56	80	М	Firm	2.5Y 4/3	-	MA	SiC	-	-	-	-
	4	Lower Subsoil	llCk	80	100	М	Firm	2.5Y 4/2	2	MA	SiC	-	S	-	-
SRKF16135	1	Topsoil	Ар	0	16	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	16	55	М	Firm	10YR 4/4	-	M/F/SB	SiC	-	-	-	-
	3	Lower Subsoil	IIBC	55	70	М	Firm	10YR 5/3	-	W/F/SB	SiC	-	-	-	-
	4	Lower Subsoil	llCk	70	100	М	Firm	2.5Y 4/3	1	MA	SiC	-	S	-	-
SRKF16136	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Topsoil	Ah	20	33	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	3	Lower Subsoil	Cg	33	75	W	Sticky	2.5Y 4/1	-	MA	SiCL	-	-	-	-
	4	Lower Subsoil	Ckg	75	100	М	Firm	2.5Y 3/1	-	MA	SiC	-	S	-	-
SRKF16137	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	3	M/F/GR	SiCL	-	-	-	-
	2	Topsoil	Ah	20	39	М	Friable	10Y 2/1	-	M/F/SB	SiCL	-	-	-	-
	3	Upper Subsoil	Bm	39	55	М	Friable	10YR 4/3	-	W/M/SB	SiCL	-	-	-	_

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	4	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 5/3	1	MA	SiC	-	S	-	-
SRKF16138	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Topsoil	Ah	20	34	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	3	Upper Subsoil	Bm	34	57	М	Friable	10YR 4/3	-	M/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	BC	57	90	М	Friable	10YR 4/3	-	W/M/SB	SiCL	-	-	-	-
	5	Lower Subsoil	Ck	90	100	М	Firm	2.5Y 4/3	-	MA	SiC	-	S	-	-
SRKF16139	1	Topsoil	Apk	0	18	М	Very Friable	10YR 3/2	-	M/F/GR	LS	-	S	-	-
	2	Topsoil	Ahk	18	70	М	Very Friable	10YR 3/2	-	M/M/SB	LfS	-	S	-	-
	3	Lower Subsoil	llCk	70	80	М	Very Friable	10YR 4/3	40	MA	LfS	-	S	-	-
SRKF16140	1	Topsoil	Ahk	0	22	М	Very Friable	10YR 2/2	-	W/F/SB	SiL	-	S	SRKF16140-Ahk	Y
	2	Lower Subsoil	Ck1	22	33	М	Very Friable	10YR 4/2	-	MA	SiL	-	S	SRKF16140-Ck1	Y
	3	Topsoil	Ahkb	33	49	М	Very Friable	10YR 2/2	-	MA	SiL	-	S	SRKF16140-Ahkb	Y
	4	Lower Subsoil	Ck2	49	110	М	Very Friable	10YR 4/2	-	MA	SL	-	S	SRKF16140-Ck2	Y
SRKF16141	1	Topsoil	Ahk	0	25	М	Firm	10YR 2/1	10	M/F/SB	SiCL	-	S	-	-
	2	Lower Subsoil	Ck	25	70	М	Firm	2.5Y 4/3	35	MA	SiC	-	S	-	-
SRKF16142	1	Lower Subsoil	Ck	0	10	М	Friable	10YR 4/3	90	MA	LS	-	S	-	-
SRKF16143	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	5	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	20	38	D	Slightly Hard	10YR 4/3	5	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	38	70	D	Hard	10YR 4/3	5	MA	SiCL	-	М	-	-
SRKF16144	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	3	M/F/GR	SiCL	-	-	-	-
	2	Topsoil	Ah	20	32	М	Firm	10YR 2/1	3	M/F/SB	SiC	-	-	-	-
	3	Upper Subsoil	Bm	32	48	М	Firm	10YR 4/4	3	M/F/SB	SiC	-	-	-	-
	4	Lower Subsoil	Ck1	48	90	М	Firm	2.5Y 4/3	3	MA	SiC	-	М	-	-
	5	Lower Subsoil	Ck2	90	100	М	Firm	2.5Y 5/3	3	MA	SiC	-	VS	-	-
SRKF16145	1	Topsoil	Ар	0	20	М	Firm	10YR 2/1	-	M/F/SB	SiC	-	-	-	-
	2	Topsoil	Ah	20	30	М	Firm	10YR 2/1	-	M/F/SB	SiC	-	-	-	-
	3	Upper Subsoil	Bm	30	50	М	Firm	10YR 4/3	-	M/F/SB	SiC	-	-	-	-
	4	Lower Subsoil	llCk	50	100	М	Firm	2.5Y 5/3	7	MA	SiC	-	S	-	-
SRKF16146	1	Topsoil	Ah	0	29	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	29	44	М	Firm	10YR 4/3	-	M/M/SB	SiC	-	-	-	-
	3	Lower Subsoil	Ck	44	100	М	Firm	-	-	MA	SiC	-	М	-	-
SRKF16147	1	Topsoil	Ар	0	25	М	Firm	10YR 2/1	-	M/M/GR	SiC	-	-	-	-
	2	Upper Subsoil	Bmk	25	45	М	Firm	10YR 4/3	-	M/F/SB	SiC	_	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	Ck	45	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16148	1	Organic	Oh	35	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahkg	0	35	W	Slightly Sticky	2.5Y 2/1	-	-	SiCL	-	W	-	-
	3	Lower Subsoil	Ckg	35	65	W	Sticky	5Y 3/1	-	MA	SiC	-	W	-	-
SRKF16149	1	Topsoil	Ahk	0	18	М	Friable	10YR 3/2	-	M/M/SB	SiCL	-	М	-	-
	2	Upper Subsoil	Bmk	18	36	М	Firm	2.5Y 4/3	5	W/M/SB	SiCL	-	S	-	-
	3	Lower Subsoil	Ck	36	100	М	Friable	2.5Y 4/3	5	MA	SiCL	-	S	-	-
SRKF16150	1	Duff	LFH	6	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ah	0	14	М	Very Friable	10YR 2/2	70	W/F/GR	LS	-	-	-	-
	3	Lower Subsoil	Ck	14	50	М	Very Friable	2.5Y 3/2	75	MA	LS	-	S	-	-
SRKF16151	1	Topsoil	Ahk	0	41	М	Very Friable	10YR 2/1	5	M/F/GR	L	-	W	-	-
	2	Lower Subsoil	Ck	41	75	М	Firm	2.5Y 4/3	10	MA	SiCL	-	S	-	-
SRKF16152	1	Topsoil	Ah	0	26	М	Very Friable	10YR 2/1	15	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	СА	26	40	М	Friable	2.5Y 3/2	65	W/F/SB	L	-	-	-	-
SRKF16153	1	Topsoil	Ahk	0	21	М	Friable	10YR 2/1	40	M/F/SB	SL	-	W	-	-
	2	Upper Subsoil	Bmk	21	50	М	Friable	10YR 4/3	70	W/F/SB	SL	-	М	-	-
SRKF16154	1	Lower Subsoil	Ck1	0	7	М	Loose	2.5Y 4/3	-	SG	S	-	S	-	-
	2	Lower Subsoil	Ck2	7	20	М	Loose	2.5Y 4/3	80	SG	S	-	S	-	-
SRKF16155	1	Lower Subsoil	Ck1	0	22	М	Very Friable	2.5Y 4/3	-	SG	LS	-	S	-	-
	2	Lower Subsoil	Ck2	22	40	М	Very Friable	2.5Y 4/3	60	SG	LS	-	S	-	-
SRKF16156	1	Topsoil	Ар	0	15	D	Slightly Hard	10YR 2/1	5	M/C/PL	L	-	-	-	-
	2	Upper Subsoil	Bgj	15	36	D	Hard	2.5Y 4/1	7	M/C/SB	SiC	C/M/D	-	-	-
	3	Lower Subsoil	ВСдј	36	100	М	Firm	2.5Y 5/3	-	MA	SiCL	F/F/F	-	-	-
SRKF16157	1	Topsoil	Ah	0	26	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	SRKF16157-Ah	N
	2	Upper Subsoil	Bkgj	26	50	W	Sticky	2.5Y 4/2	-	W/M/GR	SiC	C/M/F	М	SRKF16157-Bkgj	N
	3	Lower Subsoil	Ckgj	50	100	М	Firm	2.5Y 4/2	-	MA	SiC	C/F/F	S	SRKF16157-Ckgj	Ν
SRKF16158	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	2	M/F/SB	SiCL	-	-	-	-
	2	Topsoil	Ah	20	31	М	Friable	10YR 2/1	2	M/F/SB	SiCL	-	-	-	-
	3	Upper Subsoil	Bm	31	48	М	Firm	10YR 4/3	1	M/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	48	80	М	Friable	2.5Y 4/2	1	MA	SiCL	-	М	-	-
SRKF16159	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	2	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	20	42	М	Friable	10YR 4/3	2	M/F/SB	SiC	-	-	-	-
	3	Lower Subsoil	Ck	42	100	D	Hard	2.5Y 4/3	-	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRKF16160	1	Organic	Oh	18	0	-	-	-	-	-	-	-	-	SRKF16160-Oh	N
	2	Topsoil	Ahg	0	14	М	Friable	5Y 2.5/1	-	M/F/GR	SiCL	-	-	SRKF16160-Ahg	N
	3	Lower Subsoil	Ckg	14	80	М	Firm	2.5Y 5/1	-	MA	SiCL	C/M/D	S	SRKF16160-Ckg	N
SRKF16161	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	1	M/F/GR	SiCL	-	-	-	-
	2	Topsoil	Ah	20	44	М	Friable	10YR 2/1	1	M/F/GR	SiCL	-	-	-	-
	3	Upper Subsoil	Btj	44	60	М	Friable	2.5Y 4/2	1	W/F/SB	SiCL	-	-	-	-
SRKF16162	1	Organic	Om	17	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahk	0	30	М	Friable	10YR 2/1	-	M/M/SB	SiCL	-	W	-	-
	3	Lower Subsoil	Ckg	30	80	М	Firm	2.5Y 4/1	-	MA	SiCL	C/M/D	S	-	-
	4	Lower Subsoil	llCkg	80	90	М	Firm	2.5Y 5/1	40	MA	CL	C/M/P	S	-	-
SRKF16163	1	Topsoil	Ар	0	18	М	Friable	10Y 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	18	40	М	Friable	10YR 4/3	2	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck1	40	80	М	Firm	2.5Y 4/2	1	MA	SiCL	-	М	-	-
	4	Lower Subsoil	Ck2	80	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	М	-	-
SRKF16164	1	Topsoil	Ah	0	24	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	24	46	М	Friable	2.5Y 4/3	-	M/F/SG	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	46	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16165	1	Organic	Om	30	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ahg	0	20	W	Slightly Sticky	2.5Y 2/1	-	-	SiCL	-	-	-	-
	3	Lower Subsoil	Ckg	20	70	W	Sticky	5Y 5/1	-	MA	SiC	C/F/F	М	-	-
SRKF16166	1	Topsoil	Ар	0	26	D	Slightly Hard	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Bm	26	50	D	Slightly Hard	10YR 4/3	5	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	50	100	М	Firm	2.5Y 5/3	-	МА	SiC	-	S	-	-
SRKF16167	1	Topsoil	Ар	0	29	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bmk	29	48	М	Friable	10YR 4/3	-	M/F/SB	SiL	-	S	-	-
	3	Lower Subsoil	llCk	48	100	М	Firm	2.5Y 5/3	-	МА	SiC	-	S	-	-
SRKF16168	1	Topsoil	Ahk	0	31	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	М	-	-
	2	Upper Subsoil	Bkg	31	50	М	Friable	2.5Y 4/1	-	W/F/SB	SiL	-	М	-	-
	3	Lower Subsoil	Ckg	50	100	М	Firm	2.5Y 3/1	-	МА	SiCL	-	S	-	-
SRKF16169	1	Topsoil	Ah	0	26	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Btj	26	43	М	Friable	10YR 4/2	2	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	43	100	М	Firm	2.5Y 4/2	1	MA	SiC	-	М	-	-
SRKF16170	1	Organic	Oh	12	0	-	-	-	-	-	-	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Topsoil	Ah	0	5	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	3	Upper Subsoil	CAkgj	5	22	М	Firm	2.5Y 4/3	-	MA	SiCL	C/M/F	S	-	-
	4	Lower Subsoil	Ckgj	22	100	М	Firm	2.5Y 5/3	-	MA	SiL	F/F/F	S	-	-
SRKF16171	1	Topsoil	Ah	0	29	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	SRKF16171-Ah	Ν
	2	Upper Subsoil	Bm	29	44	М	Friable	10YR 4/3	-	M/F/SB	SiCL	-	-	SRKF16171-Bm	Ν
	3	Lower Subsoil	Ck	44	100	М	Firm	2.5Y 5/3	-	MA	SiCL	-	S	SRKF16171-Ck	Ν
SRKF16172	1	Topsoil	Ар	0	25	D	Firm	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	25	46	D	Slightly Hard	10YR 4/2	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BC	46	70	М	Slightly Hard	2.5Y 4/2	-	MA	SiC	-	-	-	-
	4	Lower Subsoil	Ck	70	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16173	1	Topsoil	Ар	0	25	D	Slightly Hard	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	25	44	D	Slightly Hard	10YR 4/2	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	Ck	44	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	M	-	-
SRKF16174	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	27	42	М	Friable	10YR 4/2	-	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BCk	42	65	М	Firm	2.5Y 4/2	-	MA	SiC	-	М	-	-
	4	Lower Subsoil	Ck	65	100	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRKF16175	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Topsoil	Ah	20	34	М	Friable	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	3	Upper Subsoil	Btj	34	55	М	Friable	10YR 4/2	1	M/F/SB	SiCL	-	-	-	-
	4	Lower Subsoil	Ck	55	100	М	Firm	2.5Y 4/2	-	MA	SiC	-	М	-	-
SRKF16176	1	Topsoil	Ар	0	20	D	Slightly Hard	10YR 2/1	-	M/F/SB	SiCL	-	-	-	-
	2	Upper Subsoil	Btj	20	39	D	Slightly Hard	10YR 4/2	2	M/F/SB	SiCL	-	-	-	-
	3	Lower Subsoil	BC	39	65	D	Hard	10YR 4/2	1	MA	SiC	-	-	-	-
	4	Lower Subsoil	llCk	65	100	D	Hard	2.5Y 4/3	1	MA	SiC	-	М	-	-
SRKF16177	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bkgj	25	50	М	Friable	10YR 5/2	-	M/F/SG	SiCL	C/M/D	S	-	-
	3	Lower Subsoil	Ckgj	50	100	М	Firm	2.5Y 4/2	-	МА	SiCL	F/M/F	S	-	-
SRKF16178	1	Topsoil	Apk	0	27	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	S	-	-
	2	Lower Subsoil	Ck1	27	34	М	Friable	2.5Y 4/1	-	MA	SiL	-	S	-	-
	3	Topsoil	Ahkb	34	49	М	Friable	10Y 2/1	-	MA	SiL	-	S	-	-
	4	Lower Subsoil	Ck	49	100	М	Friable	2.5Y 5/3	-	MA	SiL	-	S	-	-
SRKF16179	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Upper Subsoil	Btjk	21	45	М	Friable	10YR 4/3	-	M/F/SB	SiCL	-	М	-	-
	3	Lower Subsoil	Ck	45	100	М	Firm	2.5Y 5/3	-	MA	SiCL	-	S	-	-
SRKF16180	1	Topsoil	Ahk	0	25	М	Friable	2.5Y 2/1	-	M/F/GR	SiL	-	М	-	-
	2	Lower Subsoil	Ckg	25	100	W	Slightly Sticky	2.5Y 3/1	-	MA	SiL	C/M/D	S	-	-
SRWC16001	1	Topsoil	Apk	0	21	М	Friable	10Y 3/2	-	M/F/GR	SiL	-	S	-	-
	2	Upper Subsoil	Bmk	21	49	М	Friable	10YR 5/4	-	W/M/SB	SiL	-	S	-	-
	3	Lower Subsoil	BCk	49	100	М	Firm	10YR 4/3	-	MA	SiC	-	S	-	-
	4	Lower Subsoil	Ck	100	120	М	Firm	2.5Y 4/2	-	MA	SiCL	-	S	-	-
SRWC16002	1	Duff	LFH	2	0	-	-	-	-	-	-	-	-	-	-
	2	Topsoil	Ah	0	15	М	Friable	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	3	Upper Subsoil	Btgj	15	44	М	Friable	2.5Y 3/1	-	M/M/SB	SiL	C/M/P	-	-	-
	4	Lower Subsoil	Ckgj1	44	60	М	Firm	10YR 3/1	-	MA	SiC	C/M/D	М	-	-
	5	Lower Subsoil	Ckgj2	60	70	М	Firm	10YR 3/1	-	MA	SiC	C/M/F	М	-	-
SRWC16003	1	Topsoil	Ahk	0	33	М	Friable	10YR 3/1	-	W/M/SG	LS	-	М	-	-
	2	Upper Subsoil	Bmk	33	50	М	Friable	10YR 3/2	-	M/F/GR	L	-	S	-	-
	3	Lower Subsoil	llCk	50	60	М	Firm	10YR 3/2	45	MA	L	-	S	-	-
SRWC16004	1	Lower Subsoil	Ck	0	30	М	Loose	2.5Y 3/1	65	SG	S	-	S	-	-
SRWC16005	1	Lower Subsoil	Ck1	0	3	М	Friable	2.5Y 3/1	-	MA	SL	-	М	-	-
	2	Duff	LFH	3	11	М	-	-	-	-	-	-	-	-	-
	3	Lower Subsoil	Ck2	11	23	М	Loose	2.5Y 3/2	65	SG	S	-	S	-	-
SRWC16006	1	Lower Subsoil	Ck1	0	12	М	Friable	2.5Y 3/2	5	MA	LS	-	S	-	-
	2	Lower Subsoil	Ck2	12	22	М	Loose	2.5Y 3/2	70	SG	S	-	VS	-	-
SRWC16007	1	Lower Subsoil	Ck1	0	6	М	Firm	2.5Y 3/1	-	MA	SL	-	М	SRWC16007-Ck1	Y
	2	Organic	Ofb	6	12	-	-	-	-	-	-	-	М	SRWC16007-LFH	Y
	3	Lower Subsoil	Ck2	12	24	М	Loose	10YR 3/2	60	MA	LS	-	S	SRWC16007-Ck2	Y
SRWC16008	1	Lower Subsoil	Ck1	0	5	М	Friable	2.5Y 3/1	-	MA	L	-	S	-	-
	2	Topsoil	Apkb	5	12	М	Friable	10YR 3/1	25	W/F/GR	L	-	S	-	-
	3	Lower Subsoil	Ck2	12	25	М	Loose	2.5Y 3/2	60	МА	L	-	VS	-	-
SRWC16009	1	Topsoil	Apk	0	21	М	Friable	10YR 2/1	2	M/F/GR	CL	-	W	SRWC16009-Apk	N
	2	Upper Subsoil	Bmk	21	41	М	Friable	10YR 4/3	-	W/C/SB	С	-	М	SRWC16009-Bmk	N
	3	Lower Subsoil	Ck	41	120	М	Firm	10YR 6/3	-	MA	SiC	-	S	-	-
SRWC16010	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/F/GR	L	-	W	-	-
	2	Topsoil	Ahk	20	33	М	Firm	10YR 2/1	-	M/F/GR	L	-	W	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Upper Subsoil	CAk	33	48	М	Firm	2.5YR 5/3	-	S/C/SB	С	-	М	-	-
	4	Lower Subsoil	Ck	48	120	М	Friable	2.5Y 5/4	-	MA	С	-	S	-	-
SRWC16011	1	Topsoil	Apk	0	20	W	Slightly Sticky	-	-	-	L	-	W	-	-
	2	Topsoil	Ahkgj	20	35	W	Slightly Sticky	-	-	-	L	-	W	-	-
	3	Lower Subsoil	Ckg	35	120	W	Slightly Sticky	-	-	MA	L	-	W	-	-
SRWC16012	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	5	M/F/GR	CL	-	-	SRWC16012-Ap	N
	2	Upper Subsoil	ACk	21	49	М	Friable	10YR 2/1	5	W/M/SB	CL	-	М	SRWC16012-ACk	N
	3	Lower Subsoil	Ck	49	120	М	Firm	2.5Y 4/2	3	MA	С	-	S	SRWC16012-Ck	N
SRWC16013	1	Topsoil	Ahk	0	45	W	Slightly Sticky	2.5Y 3/1	0	-	L	-	S	SRWC16013-Ahk	Y
	2	Lower Subsoil	Cgk	45	120	W	Very Sticky	2.5Y 5/1	3	MA	С	-	VS	SRWC16013-Cgk	Y
SRWC16014	1	Topsoil	Ар	0	15	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	15	20	М	Friable	10YR 3/2	-	W/M/SB	L	-	W	-	-
	3	Lower Subsoil	BCk	20	42	М	Firm	10YR 4/1	-	S/M/SB	CL	-	W	-	-
	4	Lower Subsoil	Ck	42	120	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	-	-
SRWC16015	1	Topsoil	Ар	0	16	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	16	48	М	Very Firm	10YR 3/1	-	M/M/SG	CL	-	-	-	-
	3	Lower Subsoil	Ck	48	120	М	Friable	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16016	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bmk	24	50	М	Friable	10YR 3/1	-	W/C/SB	CL	-	М	-	-
	3	Lower Subsoil	Ck	50	120	М	Very Firm	2.5Y 5/3	-	MA	С	-	S	-	-
SRWC16017	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bmk	24	50	М	Friable	10YR 3/1	-	W/C/SB	CL	-	М	-	-
	3	Lower Subsoil	Ck	50	120	М	Very Firm	2.5Y 5/3	-	MA	С	-	S	-	-
SRWC16018	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	W/M/GR	CL	-	-	-	-
	2	Upper Subsoil	ACk	27	39	W	Slightly Sticky	2.5Y 5/1	-	W/C/SB	CL	A/M/P	S	-	-
	3	Lower Subsoil	Ck	39	120	W	Sticky	2.5Y 4/3	5	MA	С	-	S	-	-
SRWC16019	1	Topsoil	Apk	0	27	М	Friable	10YR 2/1	-	M/F/GR	CL	-	W	-	-
	2	Upper Subsoil	ACk	27	44	М	Friable	10YR 3/2	-	W/C/SB	CL	-	S	-	-
	3	Lower Subsoil	Ck	44	116	М	Firm	2.5Y 4/3	-	MA	SiC	-	S	-	-
SRWC16020	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	SRWC16020-Ap	Y
	2	Topsoil	Ah	20	32	М	Firm	10YR 2/1	-	M/F/GR	L	-	-	-	-
	3	Lower Subsoil	Ck	32	120	М	Firm	2.5Y 4/3	3	MA	HC	-	S	SRWC16020-Ck	Y

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRWC16021	1	Topsoil	Ар	0	16	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	SRWC16021-Ap	Ν
	2	Upper Subsoil	Bmkgj	16	48	М	Friable	2.5Y 3/2	-	W/C/SB	CL	C/F/D	М	SRWC16021-Bmkgj	Ν
	3	Lower Subsoil	Ck	48	120	М	Very Firm	2.5Y 4/2	-	MA	С	-	S	SRWC16021-Ck	Ν
SRWC16022	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	-	M/F/GR	SiCL	-	-	SRWC16022-Ap	Y
	2	Upper Subsoil	Bm	26	46	М	Friable	10YR 3/2	-	W/C/SB	HC	-	-	SRWC16022-Bm	Y
	3	Lower Subsoil	Ck	46	120	М	Very Firm	2.5Y 5/3	-	MA	HC	-	S	SRWC16022-Ck	Y
SRWC16023	1	Topsoil	Ар	0	16	W	Nonsticky	10YR 2/1	-	M/F/GR	SiL	-	-	-	-
	2	Upper Subsoil	Bmgj	16	39	W	Sticky	2.5Y 4/1	-	MA	CL	A/C/D	-	-	-
	3	Lower Subsoil	Ckgj	39	120	W	Sticky	2.5Y 4/2	-	MA	С	A/F/D	S	-	-
SRWC16024	1	Topsoil	Ар	0	22	W	Slightly Sticky	10YR 2/1	-	W/M/GR	SiCL	-	-	-	-
	2	Upper Subsoil	Bkgj	22	31	М	Firm	10YR 3/2	-	W/C/SB	CL	C/F/D	М	-	-
	3	Upper Subsoil	Bkg	31	41	М	Firm	2.5Y 4/1	-	W/C/SG	CL	-	М	-	-
	4	Lower Subsoil	Ck	41	47	W	Sticky	2.5Y 5/3	-	MA	SiC	-	S	-	-
	5	Lower Subsoil	llCk	47	120	W	Sticky	2.5Y 5/3	-	МА	SC	-	S	-	-
SRWC16025	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Topsoil	Ah	20	32	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	3	Upper Subsoil	Bmk	32	49	М	Firm	2.5Y 3/2	-	W/C/SB	CL	-	М	-	-
	4	Lower Subsoil	Ck	49	118	М	Firm	2.5Y 4/2	-	MA	С	-	S	-	-
SRWC16026	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	SRWC16026-Ap	Y
	2	Upper Subsoil	Bmgj	27	44	М	Friable	2.5Y 3/1	-	s/c/sg	НС	C/F/F	-	SRWC16026-Bmgj	Y
	3	Lower Subsoil	Ck	44	120	М	Firm	2.5Y 5/3	-	МА	НС	-	S	SRWC16026-Ck	Y
SRWC16027	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bm	27	43	М	Friable	10YR 4/3	-	W/C/SB	С	-	-	-	-
	3	Lower Subsoil	Ck	43	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	М	-	-
SRWC16028	1	Topsoil	Ар	0	18	W	Firm	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmkgj	18	45	М	Slightly Sticky	2.5Y 3/2	-	M/F/SB	SiC	F/M/F	W	-	-
	3	Lower Subsoil	Ckgj	45	120	М	Firm	2.5Y 5/3	-	MA	SiC	C/F/F	-	-	-
SRWC16029	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bm	25	45	М	Friable	10YR 3/2	-	W/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	45	120	М	Firm	2.5Y 5/3	-	МА	С	-	М	-	-
SRWC16030	1	Topsoil	Ар	0	27	W	Slightly Sticky	-	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bm	27	49	М	Friable	_	-	W/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	49	120	М	Firm	-	-	MA	С	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRWC16031	1	Topsoil	Ар	0	14	W	Slightly Sticky	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bm	14	41	М	Friable	10YR 3/2	-	W/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	41	120	М	Firm	2.5Y 5/3	-	MA	С	-	S	-	-
SRWC16032	1	Topsoil	Ар	0	26	W	Sticky	10YR 2/1	-	-	CL	-	-	-	-
	2	Upper Subsoil	Bm	26	39	М	Friable	10Y 3/2	-	-	CL	-	-	-	-
	3	Lower Subsoil	Ck	39	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16033	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	SRWC16033-Ap	Y
	2	Upper Subsoil	Bm	21	44	М	Firm	2.5Y 4/3	-	W/C/SB	С	-	-	SRWC16033-Bm	Y
	3	Lower Subsoil	Ck	44	120	М	Firm	2.5Y 5/3	-	MA	HC	-	S	SRWC16033-Ck	Y
SRWC16034	1	Topsoil	Ар	0	29	-	-	10YR 2/1	-	M/F/GR	-	-	-	-	-
	2	Upper Subsoil	Bm	29	43	-	-	10YR 4/2	-	W/C/SB	-	-	-	-	-
	3	Lower Subsoil	Ck	43	120	-	-	2.5Y 5/3	-	MA	-	-	-	-	-
SRWC16035	1	Topsoil	Ар	0	20	М	Friable	-	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	20	32	М	Friable	-	-	W/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	32	41	М	Firm	-	-	S/C/SB	L	-	-	-	-
	4	Lower Subsoil	Ck	41	120	М	Friable	-	-	MA	SiC	-	S	-	-
SRWC16036	1	Topsoil	Apk	0	26	W	Slightly Sticky	10YR 2/1	-	W/F/GR	L	-	М	-	-
	2	Upper Subsoil	ACk	26	43	М	Firm	2.5Y 4/1	-	W/C/SB	CL	-	S	-	-
	3	Lower Subsoil	Cgk	43	120	М	Firm	2.5Y 2/1	-	MA	SiC	-	S	-	-
SRWC16037	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Lower Subsoil	Ck	26	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16038	1	Topsoil	Ар	0	24	М	Friable	-	-	-	L	-	-	-	-
	2	Upper Subsoil	Bm	24	39	М	Firm	-	-	-	CL	-	-	-	-
	3	Lower Subsoil	Ck	39	120	М	Firm	-	-	MA	SiC	-	S	-	-
SRWC16039	1	Topsoil	Apk	0	28	W	Slightly Sticky	2.5Y 2/1	-	M/F/GR	L	-	W	SRWC16039-Apk	N
	2	Upper Subsoil	ACk	28	45	М	Friable	2.5Y 4/1	-	W/C/SB	CL	-	М	SRWC16039-ACk	N
	3	Lower Subsoil	Cgk	45	120	М	Firm	2.5Y 2/1	-	MA	SiC	-	S	SRWC16039-Cgk	Ν
SRWC16040	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	S/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	20	29	М	Firm	10YR 3/2	-	W/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	29	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16041	1	Topsoil	Apk	0	30	М	Friable	10YR 2/1	-	M/F/GR	L	-	W	-	-
	2	Upper Subsoil	Bmk	30	40	М	Friable	10YR 4/3	-	W/C/SB	L	-	М	-	-
	3	Lower Subsoil	Ck	40	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRWC16042	1	Topsoil	Apk	0	26	-	-	10YR 2/1	-	M/F/GR	-	-	-	-	-
	2	Upper Subsoil	Bmk	26	41	-	-	2.5Y 3/2	-	W/C/SB	-	-	-	-	-
	3	Lower Subsoil	Ck	41	120	-	-	2.5Y 5/3	-	MA	-	-	-	-	-
SRWC16043	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	-	-	CL	-	-	-	-
	2	Upper Subsoil	Bmgj	26	39	М	Friable	2.5Y 4/2	-	-	CL	C/F/D	-	-	-
	3	Lower Subsoil	Ck	39	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16044	1	Topsoil	Ар	0	25	М	Friable	-	-	M/F/GR	CL	-	-	-	-
	2	Lower Subsoil	Cgk	25	120	М	Firm	-	-	MA	SiC	-	S	-	-
SRWC16045	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/M/GR	CL	-	-	-	-
	2	Topsoil	Ah	20	41	М	Friable	10YR 2/1	-	W/M/GR	CL	-	-	-	-
	3	Lower Subsoil	Ck	41	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16046	1	Topsoil	Ар	0	14	-	-	10YR 2/1	-	M/F/GR	-	-	-	SRWC16046-Ap	Ν
	2	Lower Subsoil	Ck	14	120	-	-	2.5Y 5/3	-	MA	-	-	М	SRWC16046-Ck	Ν
SRWC16047	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	22	38	М	Friable	10YR 4/3	-	M/M/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	38	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16048	1	Topsoil	Ар	0	20	W	Slightly Sticky	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	20	32	W	Slightly Sticky	10YR 2/1	-	W/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bmk	32	45	W	Slightly Sticky	10YR 3/2	-	W/C/SB	CL	-	М	-	-
	4	Lower Subsoil	Ck	45	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16049	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	W/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	43	М	Friable	10YR 3/2	-	W/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	43	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16050	1	Topsoil	Ар	0	23	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	23	39	М	Friable	10YR 3/2	-	W/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	39	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16051	1	Topsoil	Ар	0	28	-	-	10YR 2/1	-	M/F/GR	-	-	-	-	-
	2	Upper Subsoil	Bm	28	37	-	-	10YR 3/2	-	W/C/SB	-	-	-	-	-
	3	Lower Subsoil	Ck	37	120	-	-	2.5Y 5/3	-	MA	-	-	S	-	-
SRWC16052	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	26	41	М	Friable	10YR 4/3	-	M/M/SB	L	-	М	-	-
	3	Lower Subsoil	Ck	41	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16053	1	Topsoil	Ар	0	25	W	Slightly Sticky	10YR 2/1	-	-	L	_	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Upper Subsoil	Bgk	25	58	W	Slightly Sticky	2.5Y 3/1	-	-	CL	-	М	-	-
	3	Lower Subsoil	llCgk	58	95	W	Slightly Sticky	2.5Y 3/1	10	MA	SiL	-	S	-	-
	4	Lower Subsoil	llCgk	95	120	W	Sticky	2.5Y 6/1	20	MA	SiC	C/M/P	S	-	-
SRWC16054	1	Topsoil	Ар	0	19	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	19	37	М	Friable	10YR 4/3	-	M/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	37	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16055	1	Topsoil	Ар	0	20	-	-	10YR 2/1	-	M/F/GR	-	-	-	-	-
	2	Topsoil	Ah	20	33	-	-	10YR 2/1	-	W/F/GR	-	-	-	-	-
	3	Upper Subsoil	Bm	33	60	-	-	10YR 3/2	-	M/C/SB	-	-	-	-	-
	4	Lower Subsoil	Ck	60	120	-	-	2.5Y 5/3	-	MA	-	-	М	-	-
SRWC16056	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	60	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	20	33	М	Friable	10YR 2/1	50	W/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	33	43	М	Friable	10YR 4/3	-	M/C/SB	CL	-	-	-	-
	4	Lower Subsoil	Ck	43	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16057	1	Topsoil	Apk	0	23	М	Friable	10YR 2/1	-	M/F/GR	L	-	М	-	-
	2	Upper Subsoil	Bgk	23	65	М	Friable	2.5Y 3/1	-	W/C/SB	L	-	М	-	-
	3	Lower Subsoil	Cgk	65	120	М	Firm	2.5Y 5/1	-	MA	SiC	-	S	-	-
SRWC16058	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	SRWC16058-Ap	N
	2	Upper Subsoil	Bm	24	75	М	Friable	10YR 4/1	-	M/F/SB	CL	-	-	SRWC16058-Bm	N
	3	Lower Subsoil	Ck	75	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	SRWC16058-Ck	N
SRWC16059	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	-	M/F/GR	С	-	-	-	-
	2	Upper Subsoil	Bm	25	45	М	Friable	10YR 4/2	-	W/M/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	45	118	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16060	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	28	60	М	Friable	10YR 4/3	-	W/M/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	60	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16061	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	-	M/C/GR	L	-	-	-	-
	2	Upper Subsoil	Bgk	24	85	М	Friable	2.5Y 4/1	-	W/C/SB	L	-	М	-	-
	3	Lower Subsoil	Cgk	85	115	W	Sticky	2.5Y 5/3	-	MA	SiC	F/F/D	S	-	-
SRWC16062	1	Topsoil	Apk	0	27	М	Friable	2.5Y 3/1	-	M/F/GR	L	-	W	-	-
	2	Lower Subsoil	Ck	27	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16063	1	Topsoil	Apk	0	20	М	Friable	10YR 3/1	-	M/F/GR	L	-	М	-	-
	2	Lower Subsoil	Ck	20	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRWC16064	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/F/GR	L	-	W	-	-
	2	Topsoil	Ahk	20	33	М	Firm	10YR 2/1	-	W/F/GR	L	-	W	-	-
	3	Upper Subsoil	Bmkgj	33	47	М	Friable	10YR 3/1	-	W/C/SB	CL	-	M	-	-
	4	Lower Subsoil	Ckgj	47	120	М	Firm	2.5Y 5/3	-	MA	SiC	F/F/D	S	-	-
SRWC16065	1	Topsoil	Apk	0	20	М	Friable	10YR 2/1	-	M/F/GR	CL	-	М	-	-
	2	Topsoil	Ahk	20	35	М	Firm	10YR 2/1	-	W/F/GR	CL	-	М	-	-
	3	Lower Subsoil	Ckg	35	120	М	Friable	2.5Y 5/2	-	MA	CL	C/C/P	S	-	-
SRWC16066	1	Topsoil	Apk	0	29	М	Friable	10YR 2/1	-	M/F/GR	L	-	M	-	-
	2	Upper Subsoil	Bgk	29	75	W	Slightly Sticky	2.5Y 4/1	-	W/F/SB	L	-	M	-	-
	3	Lower Subsoil	Cgk	75	120	М	Firm	2.5Y 5/3	-	MA	SiC	C/F/D	S	-	-
SRWC16067	1	Topsoil	Apk	0	19	М	Friable	10YR 2/1	-	M/F/GR	L	-	М	-	-
	2	Upper Subsoil	Bmk	19	41	М	Friable	2.5Y 3/2	-	W/C/SB	CL	-	M	-	-
	3	Lower Subsoil	Ck	41	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16068	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	20	31	М	Friable	10YR 2/1	-	W/F/GR	L	-	-	-	-
	3	Lower Subsoil	Ck	31	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16069	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmk	27	47	М	Friable	10YR 3/1	-	W/C/SB	L	-	М	-	-
	3	Lower Subsoil	Ck	47	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16070	1	Topsoil	Ар	0	22	-	-	10YR 2/1	-	M/F/GR	-	-	-	-	-
	2	Upper Subsoil	Bmk	22	42	-	-	2.5Y 3/2	-	W/C/SB	-	-	М	-	-
	3	Lower Subsoil	Ck	42	120	-	-	2.5Y 5/3	-	MA	-	-	S	-	-
SRWC16071	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	20	32	М	Friable	10YR 2/1	-	W/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bmkgj	32	47	М	Friable	2.5Y 3/1	-	W/C/SB	L	-	М	-	-
	4	Lower Subsoil	Ckgj	47	120	М	Firm	10YR 4/1	-	MA	SiC	F/F/D	S	-	-
SRWC16072	1	Topsoil	Ар	0	15	М	Friable	2.5Y 4/2	-	W/C/SB	L	-	-	-	-
	2	Upper Subsoil	Bmk	15	35	М	Firm	2.5Y 5/3	-	M/F/GR	SiC	-	М	-	-
	3	Lower Subsoil	Ck	35	120	М	Friable	10YR 2/1	-	МА	L	-	S	-	-
SRWC16073	1	Topsoil	Ар	0	19	М	Friable	10YR 2/1	-	M/C/GR	L	-	-	-	-
	2	Upper Subsoil	Bmkgj	19	31	М	Friable	10YR 3/2	-	W/F/SB	L	C/F/D	М	-	-
	3	Lower Subsoil	Ckgj	31	120	М	Firm	2.5Y 5/3	-	МА	SiC	C/F/D	S	-	-
SRWC16074	1	Topsoil	Ар	0	21	-	-	10YR 2/1	3	M/F/GR	-	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Upper Subsoil	Bmkgj	21	45	-	-	10YR 3/2	-	W/C/SB	-	-	W	-	-
	3	Lower Subsoil	Ckgj	45	120	-	-	2.5Y 5/3	-	MA	-	C/F/D	S	-	-
SRWC16075	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmgj	17	55	М	Friable	10YR 4/2	-	W/C/SB	L	C/F/D	-	-	-
	3	Lower Subsoil	Ckg	55	120	М	Firm	2.5Y 5/3	-	MA	SiC	F/F/D	S	-	-
SRWC16076	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/C/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	58	М	Friable	10YR 4/3	-	M/M/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	58	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16077	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	55	М	Friable	10YR 2/1	-	W/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	55	70	М	Firm	2.5Y 4/3	-	-	CL	-	-	-	-
	4	Lower Subsoil	Ck	70	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16078	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	40	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	40	60	М	Firm	10YR 3/2	7	-	CL	-	-	-	-
	4	Lower Subsoil	Ck	60	120	М	Firm	2.5Y 5/3	3	MA	SiCL	F/M/D	S	-	-
SRWC16079	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmgj	26	67	М	Firm	2.5Y 4/2	-	-	CL	F/F/D	-	-	-
	3	Lower Subsoil	Ckgj	67	120	М	Firm	2.5Y 5/1	-	MA	SiC	F/F/D	S	-	-
SRWC16080	1	Topsoil	Apk	0	16	М	Friable	10YR 2/1	-	M/F/GR	CL	-	W	SRWC16080-Apk	Y
	2	Upper Subsoil	Bmk	16	58	М	Firm	2.5Y 4/3	-	M/C/SB	HC	-	М	SRWC16080-Bmk	Y
	3	Lower Subsoil	Ck	58	120	М	Firm	2.5Y 5/3	-	MA	HC	-	S	SRWC16080-Ck	Y
SRWC16081	1	Topsoil	Ар	0	22	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	SRWC16081-Ap	N
	2	Upper Subsoil	Bm	22	67	М	Friable	10YR 4/3	-	M/C/SB	L	-	-	SRWC16081-Bm	N
	3	Lower Subsoil	Ck	67	120	М	Firm	2.5Y 4/2	-	MA	SiC	-	S	SRWC16081-Ck	Ν
SRWC16082	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	26	50	М	Friable	10YR 4/3	-	M/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	50	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16083	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bgk	30	45	М	Friable	2.5Y 3/1	-	W/C/SB	CL	F/F/P	М	-	-
	3	Lower Subsoil	Cgk	45	120	М	Firm	2.5Y 4/1	-	MA	SiC	-	S	-	-
SRWC16084	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	58	М	Friable	2.5Y 4/2	-	W/C/SB	L	-	-	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	3	Lower Subsoil	Ck	58	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16085	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/C/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	30	62	М	Friable	10YR 4/3	-	W/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	62	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16086	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	20	31	М	Friable	10YR 2/1	-	W/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	31	62	М	Firm	2.5Y 4/3	-	W/C/SB	CL	-	-	-	-
	4	Lower Subsoil	Ck	62	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16087	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bm	30	41	М	Friable	10YR 4/3	-	W/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	41	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16088	1	Topsoil	Ар	0	21	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bgk	21	40	М	Friable	2.5Y 3/1	-	W/C/SB	L	-	М	-	-
	3	Lower Subsoil	Cgk	40	120	М	Firm	2.5Y 4/1	-	MA	CL	-	S	-	-
SRWC16089	1	Topsoil	Ар	0	29	М	Friable	10YR 2/1	-	M/F/GR	CL	-	-	-	-
	2	Upper Subsoil	Bg	29	70	М	Friable	10YR 3/1	-	W/C/SB	CL	-	-	-	-
	3	Lower Subsoil	С	70	105	М	Firm	2.5Y 5/1	-	MA	CL	-	-	-	-
	4	Lower Subsoil	Ck	105	120	М	Very Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16090	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	10	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	25	80	М	Friable	10YR 4/3	-	M/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	80	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16091	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	12	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	58	М	Firm	10YR 4/3	-	S/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	58	120	М	Firm	2.5Y 2/1	-	MA	SiC	-	S	-	-
SRWC16092	1	Topsoil	Ар	0	25	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	25	67	М	Friable	10YR 4/3	-	M/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	67	120	М	Firm	2.5Y 5/3	-	МА	SiC	-	S	-	-
SRWC16093	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	12	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	67	М	Friable	10YR 4/3	3	M/M/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	67	120	М	Firm	2.5Y 5/3	-	МА	SiC	-	S	-	-
SRWC16094	1	Topsoil	Ар	0	23	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	23	56	М	Friable	10YR 4/3	-	M/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	56	120	М	Firm	2.5Y 4/2	5	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRWC16095	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	52	М	Friable	10YR 4/3	-	M/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	52	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16096	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	3	M/M/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	53	М	Friable	10YR 4/3	-	M/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	53	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16097	1	Topsoil	Ар	0	20	W	Sticky	10YR 2/1	5	W/F/GR	С	-	-	SRWC16097-Ap	Y
	2	Upper Subsoil	Bgk	20	62	W	Sticky	2.5Y 4/1	-	M/C/SB	HC	C/F/P	-	SRWC16097-Bg	Y
	3	Lower Subsoil	Ckg	62	120	М	Firm	2.5Y 4/2	-	MA	HC	-	S	SRWC16097-C	Y
SRWC16098	1	Topsoil	Ар	0	19	М	Friable	10YR 5/2	5	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bgj	19	44	М	Firm	2.5Y 3/2	5	M/C/SB	CL	C/F/F	-	-	-
	3	Lower Subsoil	Ck	44	105	М	Firm	2.5Y 4/2	5	MA	SiC	-	М	-	-
SRWC16099	1	Topsoil	Ар	0	29	М	Friable	10YR 2/1	7	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	29	51	М	Friable	10YR 4/3	5	W/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	51	120	М	Firm	2.5Y 5/3	7	MA	SiC	-	S	-	-
SRWC16100	1	Topsoil	Ар	0	18	М	Friable	10YR 2/1	10	W/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bkg	18	39	М	Friable	2.5Y 4/1	10	M/C/SB	CL	A/F/P	S	-	-
	3	Lower Subsoil	Ckg	39	120	М	Firm	2.5Y 4/2	7	MA	SiC	-	S	-	-
SRWC16101	1	Topsoil	Ар	0	29	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	29	70	М	Firm	2.5Y 4/2	-	M/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	70	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16102	1	Topsoil	Apk	0	16	W	Slightly Sticky	10YR 2/1	7	M/F/GR	CL	-	S	SRWC16102-Ap	N
	2	Upper Subsoil	Bkg	16	65	М	Friable	2.5Y 4/1	7	W/C/SB	CL	A/F/P	S	SRWC16102-Bg	N
	3	Lower Subsoil	Ckgj	65	120	М	Firm	2.5Y 5/2	5	MA	SiC	C/F/F	S	SRWC16102-Ckgj	N
SRWC16103	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	53	М	Loose	10YR 2/1	-	M/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bmk	53	90	М	Firm	10YR 4/3	-	-	CL	-	М	-	-
	4	Lower Subsoil	Ck	90	120	М	Firm	2.5Y 4/2	-	MA	CL	-	S	-	-
SRWC16104	1	Upper Subsoil	Bmk	0	26	М	Firm	2.5Y 4/2	-	-	CL	-	М	-	-
	2	Lower Subsoil	Ck	26	120	М	Firm	2.5Y 5/4	-	MA	SiC	-	S	-	-
SRWC16105	1	Lower Subsoil	Ck	0	71	М	Friable	10YR 4/2	-	W/F/GR	LS	-	S	SRWC16105-Ck1	Ν
	2	Lower Subsoil	Ckg	71	90	М	Friable	10YR 3/2	-	W/C/SB	LS	F/F/P	S	SRWC16105-Ckg	Ν
	3	Lower Subsoil	llCkg	90	115	М	Friable	10YR 4/2	70	MA	LS	-	S	_	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRWC16106	1	Lower Subsoil	Ck	0	12	D	Loose	2.5Y 4/2	80	MA	LS	-	VS	-	-
SRWC16107	1	Lower Subsoil	Ck	0	52	М	Firm	2.5Y 3/2	-	W/F/GR	LS	-	S	-	-
	2	Lower Subsoil	Cgk	52	93	М	Firm	10YR 4/1	-	W/C/SB	LS	C/F/P	S	-	-
SRWC16108	1	Lower Subsoil	Ck	0	46	М	Friable	10YR 3/2	-	W/F/MA	LS	-	S	SRWC16108-Ck	Ν
	2	Lower Subsoil	llCk	46	80	М	Firm	10YR 3/2	5	MA	L	-	S	SRWC16108-Ck	Ν
SRWC16109	1	Topsoil	Apk	0	24	М	Friable	10YR 3/1	3	-	L	-	S	SRWC16109-Apk	Ν
	2	Upper Subsoil	Bgk	24	50	М	Friable	10YR 4/1	-	-	SiL	A/F/P	S	-	-
	3	Lower Subsoil	llCgk	50	75	М	Firm	10YR 4/2	-	SG	LS	F/F/F	S	-	-
	4	Lower Subsoil	llCgk	75	115	М	Loose	10YR 4/1	10	SG	S	C/F/D	S	-	-
	5	Lower Subsoil	lllCgk	115	120	М	Firm	2.5Y 4/1	-	MA	SiC	-	S	-	-
SRWC16110	1	Upper Subsoil	Bmk	0	24	М	Friable	2.5Y 4/2	-	M/F/GR	CL	-	S	SRWC16110-Bmk	N
	2	Lower Subsoil	Ck	24	105	М	Firm	2.5Y 5/4	-	MA	SiC	-	S	SRWC16110-Ck	N
SRWC16111	1	Topsoil	Ар	0	16	М	Friable	10YR 2/1	10	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	16	47	М	Friable	10YR 4/3	9	M/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	47	120	М	Firm	2.5Y 5/2	9	MA	SiC	-	S	-	-
SRWC16112	1	Topsoil	Ар	0	30	М	Friable		10	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	47	М	Friable	10YR 2/1	10	-	L	-	-	-	-
	3	Upper Subsoil	Bmgj	47	68	М	Firm	10YR 4/2	8	W/C/SB	CL	C/F/F	-	-	-
	4	Lower Subsoil	Ck	47	120	М	Friable	2.5Y 4/2	10	MA	SiC	-	S	-	-
SRWC16113	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	12	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	20	56	М	Friable	10YR 4/3	10	W/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	56	120	М	Firm	2.5Y 4/3	15	MA	CL	-	М	-	-
SRWC16114	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	12	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	34	М	Friable	10YR 2/1	12	M/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	34	60	М	Friable	10YR 4/3	5	M/C/SB	L	-	-	-	-
	4	Lower Subsoil	Ck	60	120	М	Firm	2.5Y 5/3	12	MA	SiC	-	S	-	-
SRWC16115	1	Topsoil	Apk	0	20	М	Friable	10YR 3/1	7	M/F/GR	L	-	М	-	-
	2	Upper Subsoil	Bgk	20	50	М	Friable	2.5Y 4/1	7	M/C/SB	L	A/M/P	М	-	-
	3	Lower Subsoil	Cgk1	50	95	М	Firm	2.5Y 4/1	10	MA	CL	-	М	-	-
	4	Lower Subsoil	Cgk2	95	103	М	Firm	2.5Y 5/3	40	MA	CL	C/F	S	-	-
SRWC16116	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bmgj	27	59	М	Friable	10YR 4/2	-	M/C/SB	L	F/F/F	-	-	-
	3	Lower Subsoil	Ck	59	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
SRWC16117	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	7	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	26	54	М	Friable	10YR 4/3	7	M/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	54	120	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16118	1	Topsoil	Ар	0	20	М	Friable	10YR 2/1	10	M/F/GR	L	-	-	-	-
	2	Lower Subsoil	Ck	20	120	М	Firm	2.5Y 5/3	10	MA	CL	-	М	-	-
SRWC16119	1	Topsoil	Apk	0	28	М	Friable	10YR 2/1	15	M/F/GR	L	-	М	-	-
	2	Upper Subsoil	Bmk	28	60	М	Friable	2.5Y 4/2	20	W/C/SB	L	-	М	-	-
	3	Lower Subsoil	Ckgj	60	95	М	Firm	2.5Y 3/1	30	MA	CL	C/M/D	S	-	-
SRWC16120	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	30	49	М	Friable	2.5YR 4/3	-	M/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	49	116	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16121	1	Topsoil	Ар	0	17	М	Friable	10YR 2/1	20	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	17	39	М	Friable	10YR 4/3	20	M/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	39	107	М	Firm	2.5Y 5/3	30	MA	SiC	-	S	-	-
SRWC16122	1	Topsoil	Ар	0	26	М	Friable	10YR 2/1	-	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	26	73	М	Friable	10YR 4/3	-	M/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	73	115	М	Firm	2.5Y 5/3	-	MA	SiC	-	S	-	-
SRWC16123	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	12	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	47	М	Friable	10YR 2/1	12	M/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	47	70	М	Friable	10YR 3/2	7	M/C/SB	L	-	-	-	-
	4	Lower Subsoil	Ck	70	112	М	Firm	2.5Y 5/3	5	MA	SiC	-	S	-	-
SRWC16124	1	Topsoil	Ар	0	28	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	28	60	М	Friable	2.5Y 4/3	3	M/C/SB	CL	-	-	-	-
	3	Lower Subsoil	Ck	60	119	D	Hard	2.5Y 5/3	5	MA	SiC	-	S	-	-
SRWC16125	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	33	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bm	33	55	М	Friable	10YR 4/3	9	M/C/SB	CL	-	-	-	-
	4	Lower Subsoil	Ck	55	116	М	Firm	2.5Y 5/3	15	МА	SiC	-	S	-	-
SRWC16126	1	Topsoil	Ар	0	30	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	2	Topsoil	Ah	30	32	М	Friable	10YR 2/1	5	M/F/GR	L	-	-	-	-
	3	Upper Subsoil	Bmk	32	42	М	Friable	2.5Y 3/2	5	M/C/SB	L	-	S	-	-
	4	Lower Subsoil	Ck	42	120	М	Firm	2.5Y 5/3	7	МА	SiC	-	S	-	-
SRWC16127	1	Topsoil	Ар	0	24	М	Friable	10YR 2/1	12	S/F/GR	L	-	-	-	-

Attachment C Soils Data Attachment March 2018

Table C-15 Soil Horizon

Site #	Layer #	Layer Type	Horizon	Upper (cm)	Lower (cm)	Moisture Code	Consistence	Horizon Color	CFrag %	Horizon Structure	Texture Code	Mottles	Carbonate Code	Sample ID	Sample Submitted for Analysis (Y/N)
	2	Upper Subsoil	Bmgj	24	70	М	Friable	2.5Y 3/1	12	M/M/SB	CL	C/F/F	-	-	-
	3	Lower Subsoil	Ck	70	120	М	Firm	2.5Y 5/3	15	MA	SiC	-	S	-	-
SRWC16128	1	Topsoil	Ар	0	27	М	Friable	10YR 2/1	7	M/F/GR	L	-	-	-	-
	2	Upper Subsoil	Bm	27	49	М	Friable	2.5Y 3/2	7	W/C/SB	L	-	-	-	-
	3	Lower Subsoil	Ck	49	120	М	Firm	2.5Y 5/3	12	MA	SiC	-	S	-	-

Attachment C Soils Data Attachment March 2018

Table C-15 Soil Horizon

KEY:					
	Modifiers				
b	a buried soil horizon				
g	characterized by gray colours		ing, or both		
h	a horizon enriched with organ				
J	=		expression of, but failure to meet the		ne suffix it modifies
k	·		by visible effervescence when dilut		
m		-	r solution, or all three to give a char	nge in colour or structu	ure, or both
n		-	o exchangeable Na is 10 or less		
р		-	tivation, logging, and habitation		
t	an illuvial horizon enriched wit	-			
1/2	denotes a change in structure				
/	denotes a change in parent n	naterial (wider varia	tion in texture) or deposit		
Moisture	Code	Texture		Mottles	
D	dry	С	clay	Abundar	nce
Μ	moist	CL	clay loam	F	few (<2% of area)
W	wet	fSL	fine sandy loam	С	common (2-20% of area)
		HC	heavy clay	Μ	many (>20% of area)
Horizon S	Structure	L	loam	Contrast	t
Grade		LfS	loamy fine sand	F	faint (barely noticeable)
W	weak	LS	loamy sand	D	distinct (clearly evident)
Μ	moderate	S	sand	Р	prominent (mottles standout with high contrast to surrounding matrix)
S	strong	SCL	sandy clay loam	Size	
Class		Si	silt	F	fine (<5mm)
F	fine	SiCL	silty clay loam	Μ	medium (5-15mm)
Μ	medium	SiC	silty clay	С	coarse (>15mm)
С	coarse	SiL	silt loam		
Kind		SL	sandy loam		
GR	granular	vfSL	very fine sandy loam		
SB	subangular blocky				
BL	blocky				
PL	platy				
SG	single grain				
MA	massive				

10Y 2/1 greenish black 10YR 3/2 very dark grayish olive 10YR 2/1 black 10YR 2/2 very dark brown 10YR 2/3 very dark gray 10YR 3/1 very dark gray 10YR 3/2 very dark gray 10YR 3/2 very dark gray ish brown 10YR 3/3 dark brown 10YR 3/3 dark yellowish brown 10YR 4/1 dark gray 10YR 4/2 dark gray ish brown 10YR 4/3 brown 10YR 4/3 brown 10YR 5/3 brown 10YR 5/3 brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/2 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/1 dark gray 2.5Y 4/2 dark gray ish brown 2.5Y 4/2 dark gray ish brown 2.5Y 5/2 gray ish brown 2.5Y 5/2 gray ish brown 2.5Y 5/2 gray ish brown <tr< th=""><th>Horizon Color</th><th></th></tr<>	Horizon Color	
10YR 2/1 black 10YR 2/2 very dark brown 10YR 2/3 very dark brown 10YR 3/1 very dark gray 10YR 3/2 very dark gray sh brown 10YR 3/2 very dark gray sh brown 10YR 3/3 dark brown 10YR 3/3 dark gray 10YR 3/4 dark gray 10YR 4/1 dark gray 10YR 4/2 dark gray sh brown 10YR 4/3 brown 10YR 4/4 dark yellowish brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/2 dark gray sh brown 2.5Y 4/2 dark gray sh brown 2.5Y 4/3 olive brown 2.5Y 4/4 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light vellowish brown <tr< td=""><td>10Y 2/1</td><td>greenish black</td></tr<>	10Y 2/1	greenish black
10YR 2/2 very dark brown 10YR 2/3 very dark brown 10YR 3/1 very dark gray 10YR 3/2 very dark grayish brown 10YR 3/2 very dark grayish brown 10YR 3/3 dark brown 10YR 3/3 dark yellowish brown 10YR 4/1 dark gray 10YR 4/2 dark grayish brown 10YR 4/3 brown 10YR 4/3 brown 10YR 4/3 brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/1 very dark grayish brown 2.5Y 3/2 very dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/1 dark grayish brown 2.5Y 4/2 gray 2.5Y 5/2 grayish brown 2.5Y 5/2 grayish brown 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown	10Y 3/2	very dark grayish olive
10YR 2/3 very dark brown 10YR 3/1 very dark gray 10YR 3/2 very dark grayish brown 10YR 3/3 dark brown 10YR 3/3 dark yellowish brown 10YR 3/4 dark gray 10YR 4/1 dark gray 10YR 4/2 dark grayish brown 10YR 4/2 dark grayish brown 10YR 4/3 brown 10YR 4/3 brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark grayish brown 2.5Y 4/2 dark gray 2.5Y 4/2 dark gray 2.5Y 4/3 olive brown 2.5Y 4/4 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 gray 2.5Y 6/1 gray 2.5Y 6/2	10YR 2/1	black
10YR 3/1 very dark grayish brown 10YR 3/2 very dark grayish brown 10YR 3/3 dark brown 10YR 3/4 dark yellowish brown 10YR 4/1 dark gray 10YR 4/2 dark grayish brown 10YR 4/2 dark grayish brown 10YR 4/3 brown 10YR 4/3 brown 10YR 5/2 grayish brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/3 olive brown 2.5Y 4/4 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 6/3 light olive brown 2.5Y 6/3 light pellowish brown 2.5Y 6/3 ight pellowish brown	10YR 2/2	very dark brown
10YR 3/2very dark grayish brown10YR 3/3dark brown10YR 3/4dark yellowish brown10YR 4/1dark gray10YR 4/2dark grayish brown10YR 4/2dark grayish brown10YR 4/3brown10YR 4/4dark yellowish brown10YR 5/2grayish brown10YR 5/3brown10YR 5/3brown10YR 6/1gray10YR 6/1gray10YR 6/3pale brown2.5Y 2/1black2.5Y 3/1very dark gray2.5Y 4/1dark gray2.5Y 4/2dark grayish brown2.5Y 4/4olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 5/3light olive brown2.5Y 5/4gray2.5Y 6/2light brownish gray2.5Y 6/3reddish brown2.5Y 6/3reddish brown2.5Y 7/1black5Y 3/1very dark gray2.5Y 6/3reddish brown2.5Y 7jight vellowish brown2.5Y 7jight vellowish brown2.5Y 6/3reddish brown2.5Y 7jight vellowish brown2.5Y 7jigray2.5Y	10YR 2/3	very dark brown
10YR 3/3dark brown10YR 3/4dark yellowish brown10YR 4/1dark gray10YR 4/2dark grayish brown10YR 4/2dark grayish brown10YR 4/3brown10YR 4/4dark yellowish brown10YR 5/2grayish brown10YR 5/3brown10YR 6/1gray10YR 6/3pale brown2.5Y 2/1black2.5Y 3/1very dark gray2.5Y 3/1very dark gray2.5Y 4/2dark grayish brown2.5Y 4/2dark grayish brown2.5Y 4/3olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 5/4light olive brown2.5Y 5/4light olive brown2.5Y 6/3light yellowish brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3reddish brown2.5Y 7jard y2.5Y 6/3light yellowish brown2.5Y 6/3reddish brown2.5Y 7jard y2.5Y 6/3light yellowish brown2.5Y 7jard y2.5Y 6/3light yellowish brown2.5Y 7jard y2.5Y 7jard y2.5Y 6/3light yellowish brown2.5Y 7jard y2.5Y 7jard y2.5Y 7jard y2.5Y 6/3light yellowish brown	10YR 3/1	very dark gray
10YR 3/4 dark yellowish brown 10YR 4/1 dark gray 10YR 4/2 dark grayish brown 10YR 4/3 brown 10YR 4/3 dark yellowish brown 10YR 4/4 dark yellowish brown 10YR 5/2 grayish brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark gray 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 ight olive brown 2.5Y 5/2 grayish brown 2.5Y 6/3 light olive brown 2.5Y 6/3 light olive brown 2.5Y 6/3 light pellowish brown 2.5Y 6/3 reddish brown	10YR 3/2	very dark grayish brown
10YR 4/1 dark gray 10YR 4/2 dark grayish brown 10YR 4/3 brown 10YR 4/4 dark yellowish brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 5/3 brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/3 olive brown 2.5Y 4/3 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 gray 2.5Y 6/1 gray 2.5Y 6/2 light olive brown 2.5Y 6/3 light yellowish brown 2.5Y 6/3 light yellowish brown 2.5Y 6/3 reddish brown 2.5Y 7 jack 5Y 2.5/1 black <	10YR 3/3	dark brown
10YR 4/2dark grayish brown10YR 4/3brown10YR 4/4dark yellowish brown10YR 5/2grayish brown10YR 5/3brown10YR 5/4yellowish brown10YR 6/1gray10YR 6/3pale brown2.5Y 2/1black2.5Y 3/1very dark gray2.5Y 3/2very dark grayish brown2.5Y 4/1dark gray2.5Y 4/2dark grayish brown2.5Y 4/3olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 5/3light olive brown2.5Y 5/4gray2.5Y 5/3light olive brown2.5Y 6/1gray2.5Y 6/2light olive brown2.5Y 6/3light pelowish brown2.5Y 6/3light pelowish brown2.5Y 7gray2.5Y 6/3light pelowish brown2.5Y 6/3light pelowish brown2.5Y 7gray2.5Y 6/3light pelowish brown2.5Y 6/3light pelowish brown2.5Y 7jack5Y 3/1very dark gray5Y 3/1very dark gray5Y 5/1jray5Y 5/1jray5Y 5/1jray5Y 2/1black	10YR 3/4	dark yellowish brown
10YR 4/3 brown 10YR 4/4 dark yellowish brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 5/3 brown 10YR 5/4 yellowish brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/3 olive brown 2.5Y 5/4 gray 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 5/3 light olive brown 2.5Y 6/2 light brownish gray 2.5Y 6/2 light brown 2.5Y 6/3 light yellowish brown 2.5Y 6/3 light yellowish brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown	10YR 4/1	dark gray
10YR 4/4 dark yellowish brown 10YR 5/2 grayish brown 10YR 5/3 brown 10YR 5/4 yellowish brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 5/4 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 gray 2.5Y 5/3 light olive brown 2.5Y 5/4 gray 2.5Y 6/2 grayish brown 2.5Y 6/2 light olive brown 2.5Y 6/3 light pellowish brown 2.5Y 6/3 light pellowish brown 2.5Y 6/3 reddish brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5	10YR 4/2	dark grayish brown
10YR 5/2 grayish brown 10YR 5/3 brown 10YR 5/4 yellowish brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark grayish brown 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/2 grayish brown 2.5Y 4/3 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 ight olive brown 2.5Y 5/4 ight olive brown 2.5Y 6/1 gray 2.5Y 6/2 light brownish gray 2.5Y 6/3 light yellowish brown 2.5Y 6/3 light brown 2.5Y 6/3 reddish brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown	10YR 4/3	brown
10YR 5/3brown10YR 5/4yellowish brown10YR 6/1gray10YR 6/3pale brown2.5Y 2/1black2.5Y 3/1very dark gray2.5Y 3/2very dark grayish brown2.5Y 4/1dark gray2.5Y 4/2dark grayish brown2.5Y 4/3olive brown2.5Y 4/4olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 6/1gray2.5Y 6/2light olive brown2.5Y 6/3light person2.5Y 6/3light brownish gray2.5Y 6/3reddish brown2.5Y 7jack2.5Y 7yellowish brown2.5Y 6/3light yellowish brown2.5Y 7jack2.5Y 7jack3.1jack3.2jack3.3jack3.4jack3.5jack3.5jack3.5jack3.5jack3.5jack3.5jack3.5jack3.5 <td>10YR 4/4</td> <td>dark yellowish brown</td>	10YR 4/4	dark yellowish brown
10YR 5/4 yellowish brown 10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark gray 2.5Y 3/2 very dark gray 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/3 olive brown 2.5Y 4/4 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 6/2 light brownish gray 2.5Y 6/2 light brownish gray 2.5Y 6/3 light yellowish brown 2.5Y 6/3 light brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 5Y 3/1 very dark gray	10YR 5/2	grayish brown
10YR 6/1 gray 10YR 6/3 pale brown 2.5Y 2/1 black 2.5Y 3/1 very dark gray 2.5Y 3/2 very dark grayish brown 2.5Y 3/2 very dark grayish brown 2.5Y 4/1 dark grayish brown 2.5Y 4/2 gray 2.5Y 4/2 grayish brown 2.5Y 5/4 gray 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 6/1 gray 2.5Y 6/2 light brownish gray 2.5Y 6/3 light yellowish brown 2.5Y 6/3 light brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 2.5YR 5/3 reddish brown 5Y 3/1 very dark gra	10YR 5/3	brown
10YR 6/3pale brown2.5Y 2/1black2.5Y 3/1very dark gray2.5Y 3/2very dark grayish brown2.5Y 3/2very dark grayish brown2.5Y 4/1dark gray2.5Y 4/2dark grayish brown2.5Y 4/3olive brown2.5Y 4/4olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 5/4light olive brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5Y 7reddish brown2.5Y 6/3reddish brown2.5Y 7yellowish brown2.5Y 7yellowish brown2.5Y 7gray2.5Y 6/2light yellowish brown2.5Y 7yellowish brown2.5Y 7yellowish brown2.5Y 7yellowish brown2.5Y 7jellokyellokyellowish brown2.5Y 7jellokyellok<	10YR 5/4	yellowish brown
2.5Y 2/1black2.5Y 3/1very dark gray2.5Y 3/2very dark grayish brown2.5Y 4/1dark gray2.5Y 4/2dark grayish brown2.5Y 4/2dark grayish brown2.5Y 4/3olive brown2.5Y 4/4olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 5/4light olive brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 3/1very dark gray5Y 5/1grayN 2/1black	10YR 6/1	gray
2.5Y 3/1 very dark gray 2.5Y 3/2 very dark grayish brown 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/2 olive brown 2.5Y 4/3 olive brown 2.5Y 4/3 gray 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 6/1 gray 2.5Y 6/2 light brownish gray 2.5Y 6/3 light yellowish brown 2.5Y 6/3 reddish brown 2.5Y 7 black 5Y 2.5/1 black 5Y 3/1 very dark gray 5Y 5/1 gray N 2/1 black	10YR 6/3	pale brown
2.5Y 3/2 very dark grayish brown 2.5Y 4/1 dark gray 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/2 dark grayish brown 2.5Y 4/2 olive brown 2.5Y 4/3 olive brown 2.5Y 5/4 gray 2.5Y 5/2 grayish brown 2.5Y 5/2 grayish brown 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 6/1 gray 2.5Y 6/2 light brownish gray 2.5Y 6/3 light yellowish brown 2.5Y 6/3 light yellowish brown 2.5Y 6/3 reddish brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown 5Y 2.5/1 black 5Y 3/1 very dark gray 5Y 5/1 gray N 2/1 black	2.5Y 2/1	black
2.5Y 4/1dark gray2.5Y 4/2dark grayish brown2.5Y 4/2dark grayish brown2.5Y 4/3olive brown2.5Y 4/4olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light pellowish brown2.5Y 6/3reddish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1gray	2.5Y 3/1	very dark gray
2.5Y 4/2dark grayish brown2.5Y 4/3olive brown2.5Y 4/4olive brown2.5Y 5/1gray2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5Y 6/3reddish brown2.5YR 4/3reddish brown2.5YR 4/3reddish brown2.5YR 5/3light yellowish brown2.5YR 5/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 3/2	very dark grayish brown
2.5Y 4/3 olive brown 2.5Y 4/4 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/2 grayish brown 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 6/1 gray 2.5Y 6/2 light brownish gray 2.5Y 6/3 light yellowish brown 2.5Y 6/3 reddish brown 2.5YR 4/3 reddish brown 5.5YR 5/3 reddish brown 5.5YR 5/3 reddish brown 5Y 2.5/1 black 5Y 3/1 very dark gray 5Y 5/1 gray N 2/1 black	2.5Y 4/1	dark gray
2.5Y 4/4 olive brown 2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 6/1 gray 2.5Y 6/2 light brownish gray 2.5Y 6/2 light yellowish brown 2.5Y 6/3 light yellowish brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown 5Y 2.5/1 black 5Y 3/1 very dark gray 5Y 5/1 gray N 2/1 black	2.5Y 4/2	dark grayish brown
2.5Y 5/1 gray 2.5Y 5/2 grayish brown 2.5Y 5/3 light olive brown 2.5Y 5/4 light olive brown 2.5Y 6/1 gray 2.5Y 6/2 light brownish gray 2.5Y 6/3 light yellowish brown 2.5YR 4/3 reddish brown 2.5YR 5/3 reddish brown 5Y 2.5/1 black 5Y 3/1 very dark gray 5Y 5/1 gray	2.5Y 4/3	olive brown
2.5Y 5/2grayish brown2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 4/4	olive brown
2.5Y 5/3light olive brown2.5Y 5/4light olive brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 5/1	gray
2.5Y 5/4light olive brown2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 5/2	grayish brown
2.5Y 6/1gray2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 5/3	light olive brown
2.5Y 6/2light brownish gray2.5Y 6/3light yellowish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 5/4	light olive brown
2.5Y 6/3light yellowish brown2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 6/1	gray
2.5YR 4/3reddish brown2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 6/2	light brownish gray
2.5YR 5/3reddish brown5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5Y 6/3	light yellowish brown
5Y 2.5/1black5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5YR 4/3	reddish brown
5Y 3/1very dark gray5Y 5/1grayN 2/1black	2.5YR 5/3	reddish brown
5Y 5/1 gray N 2/1 black	5Y 2.5/1	black
5Y 5/1 gray N 2/1 black	5Y 3/1	very dark gray
	5Y 5/1	
N 3/1 very dark gray	N 2/1	black
	N 3/1	very dark gray

Attachment C Soils Data Attachment March 2018

C.3 SOIL SITE ATTACHMENT

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRBL16001	Scrubland	2016	GLCU.R	FLUV(M)	TBRgI	ZGC1	1	-	D	0.5 - 2.0%	100-500	Imperfect	Level	0.01 - 0.1%	0	0	N/A	-	679078	5657814	11
SRBL16002	Scrubland	2016	GL.R	FLUV(M)\FLUV(MC)\FLUV(M)	TBRgl	TBSR1	0	-	E	0.5 - 2.0%	50-100	Imperfect	Level	<0.01%	18	20	Р	-	678855	5657522	11
SRBL16003	Forested Range	2016	O.BLC	FLUV(M)	SRC	ZGC1	1	352	U	0.5 - 2.0%	50-100	Moderately Well	Inclined	<0.01%	29	0	G	-	679081	5658040	11
SRBL16004	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS1	16	136	М	>15 - 30%	50-100	Well	Inclined	<0.01%	27	16	G	-	678708	5657837	11
SRBL16005	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	3	62	Μ	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	21	21	G	-	678555	5657991	11
SRBL16006	Improved Pasture	2016	O.HG	GLLC(MF)	POTco	POT2	10	44	L	>15 - 30%	50-100	Poor	Hummocky	<0.01%	41	0	G	85	678579	5657733	11
SRBL16007	Improved Pasture	2016	O.BLC	GLLC(MF)	FSHco	FSH2	3	70	М	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	45	14	G	-	678957	5658268	11
SRBL16008	Improved Pasture	2016	O.BLC	GLLC(F)	FSHtk	FSH1	3	86	М	>10 - 15%	100-500	Well	Inclined	<0.01%	35	22	G	-	678949	5658455	11
SRBL16009	Improved Pasture	2016	O.BLC	GLLC(F)	FSHtk	FSH1	5	12	U	>5 - 10%	50-100	Well	Inclined	<0.01%	36	17	G	-	678430	5658503	11
SRBL16010	Wetland	2016	R.HG	GLLC(F)	POTzr	POT1	1	-	D	0.5 - 2.0%	50-100	Poor	Level	<0.01%	50	0	Р	60	678539	5658202	11
SRBL16011	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	DVFS2	9	210	М	>5 - 10%	50-100	Well	Inclined	<0.01%	10	23	F	-	678148	5658377	11
SRBL16012	Scrubland	2016	O.BLC	GLLC(F)	FSH	FSH1	9	56	Μ	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	24	18	G	-	678252	5658611	11
SRBL16013	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVFS1	13	76	М	>15 - 30%	100-500	Well	Inclined	0.01 - 0.1%	18	19	F	-	678626	5658708	11
SRBL16014	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	FSH2	2	270	М	>2.0 - 5.0%	50-100	Moderately Well	Undulating	<0.01%	24	14	F	-	678894	5658721	11
SRBL16015	Improved Pasture	2016	N/A	FLUV(MC)\GLFL(VC)	TBRxg	SRC1	1	-	E	0.5 - 2.0%	100-500	Well	Level	<0.01%	0	0	N/A	-	677198	5655168	11
SRBL16016	Woodland	2016	CU.R	FLUV(MC)\FLUV(MC)	TBRxg	TBR2	1	-	E	0 - 0.5%	100-500	Well	Level	<0.01%	0	0	N/A	-	676997	5655198	11
SRBL16017	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	DVFS2	3	128	М	>5 - 10%	100-500	Well	Inclined	<0.01%	23	22	F	-	676725	5655938	11
SRBL16018	Woodland	2016	R.BLC	TILL(F)	DVGzrfi	DVG1	38	140	U	>30 - 45%	100-500	Well	Inclined	0.1 - 3%	16	0	F	-	676734	5655887	11
SRBL16019	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVG1	5	67	М	>5 - 10%	50-100	Well	Inclined	<0.01%	19	24	G	-	676917	5656339	11
SRBL16020	Wetland	2016	T.H	ORG(HU)\FLUV(MF)	ZORxt	ZGC1	0	-	D	0 - 0.5%	50-100	Very Poor	Level	<0.01%	70	0	G	10	678094	5658066	11
SRBL16021	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	3	36	М	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	26	29	G	-	678102	5658277	11
SRBL16022	Improved Pasture	2016	CA.BLC	TILL(MF)	DVGca	DVG1	15	270	М	>15 - 30%	50-100	Well	Hummocky	<0.01%	14	17	Р	-	682253	5658839	11
SRBL16023	Improved Pasture	2016	GLCA.BLC	TILL(MF)	DVGcagltk	TBR6	2	22	М	>2.0 - 5.0%	25-50	Imperfect	Inclined	0.01 - 0.1%	50	0	G	-	682081	5658986	11
SRBL16024	Scrubland	2016	O.BLC	TILL(MF)	DVG	DVG1	35	308	М	>30 - 45%	50-100	Well	Inclined	<0.01%	20	35	F	-	681672	5658868	11
SRBL16025	Scrubland	2016	O.BLC	TILL(MF)	DVG	DVG1	3	-	E	>10 - 15%	50-100	Well	Hummocky	<0.01%	26	16	G	-	682007	5658762	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRBL16026	Riparian	2016	O.HG	FLUV(MF)	ZGW	TBR6	1	78	E	0.5 - 2.0%	50-100	Poor	Level	0.1 - 3%	14	21	F	-	682184	5658777	11
SRBL16027	Woodland	2016	GL.HR	FLUV(MC)	TBRgl	TBR2	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	28	0	F	-	682312	5658499	11
SRBL16028	Floodplain	2016	O.R	FLUV(VC)	TBRaa	TBRgr1	1	-	E	0.5 - 2.0%	50-100	Well	Level	>50%	0	0	N/A	-	682214	5658254	11
SRBL16029	Scrubland	2016	CA.BLC	TILL(F)	DVGcaerfi	DVG1	52	182	М	>45 - 70%	50-100	Well	Inclined	0.1 - 3%	23	32	F	-	682019	5658339	11
SRBL16030	Сгор	2016	O.BLC	GLLC(MF)	FSHco	DVFS2	2	22	М	>2.0 - 5.0%	50-100	Moderately Well	Undulating	<0.01%	17	28	G	-	681819	5658696	11
SRBL16031	Woodland	2016	GL.BLC	TILL(F)	DVGglfi	DVFS2	1	270	М	0.5 - 2.0%	50-100	Imperfect	Inclined	<0.01%	22	28	G	-	677908	5658081	11
SRBL16032	Improved Pasture	2016	O.BLC	TILL(MF)	DVG	DVFS2	5	62	М	>2.0 - 5.0%	50-100	Well	Undulating	<0.01%	28	22	F	-	677762	5658010	11
SRBL16033	Hayland	2016	O.BLC	TILL(F)	DVGfi	DVG1	3	35	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	22	23	G	-	676969	5657251	11
SRBL16034	Hayland	2016	O.BLC	TILL(F)	DVGfi	DVG1	3	242	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	22	25	G	-	677203	5657427	11
SRBL16035	Scrubland	2016	O.HG	FLUV(M)\FLUV(MF)	ZGW	POT6	1	20	D	0.5 - 2.0%	100-500	Poor	Level	<0.01%	37	18	F	48	677415	5657578	11
SRBL16036	Scrubland	2016	O.BLC	TILL(MF)	DVG	POT6	5	270	L	>5 - 10%	25-50	Moderately Well	Inclined	<0.01%	34	21	G	-	677438	5657559	11
SRBL16037	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(MF)	FSHxt	DVFS2	3	210	U	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	24	31	G	-	677535	5657775	11
SRBL16038	Scrubland	2016	O.BLC	GLLC(MF)	FSHcotk	DVFS2	1	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	39	16	F	-	680431	5658961	11
SRBL16039	Scrubland	2016	GL.BLC	GLLC(F)	FSHgltk	DVFS2	2	212	L	>2.0 - 5.0%	100-500	Imperfect	Inclined	<0.01%	33	17	G	-	680533	5659170	11
SRBL16040	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVFS2	2	12	М	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	27	21	F	-	680634	5659331	11
SRBL16041	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVG1	4	178	М	>5 - 10%	50-100	Well	Inclined	<0.01%	21	29	G	-	680628	5659540	11
SRBL16042	Improved Pasture	2016	R.HG	FLUV(MF)	ZGW	POT6	1	-	E	0.5 - 2.0%	100-500	Poor	Level	<0.01%	26	0	G	-	680278	5659505	11
SRBL16043	Scrubland	2016	O.BLC	TILL(MF)	DVG	DVFS2	1	352	М	0.5 - 2.0%	50-100	Moderately Well	Level	<0.01%	29	26	F	-	680260	5659446	11
SRBL16044	Wetland	2016	O.HG	TILL(F)	POTzz	POT1	1	-	E	0 - 0.5%	100-500	Poor	Level	<0.01%	24	24	G	50	680189	5659146	11
SRBL16045	Scrubland	2016	O.BLC	TILL(F)	DVGfi	FSH2	1	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	21	17	G	-	680022	5658849	11
SRBL16046	Wetland	2016	O.HG	GLLC(F)	POT	POT2	1	-	D	0.5 - 2.0%	50-100	Poor	Level	<0.01%	36	15	F	-	679807	5658841	11
SRBL16047	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	5	58	М	>5 - 10%	100-500	Well	Inclined	<0.01%	23	24	F	-	679883	5658995	11
SRBL16048	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	2	62	М	>5 - 10%	100-500	Well	Inclined	<0.01%	23	21	G	-	679321	5659122	11
SRBL16049	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	DVFS2	2	62	U	>5 - 10%	100-500	Well	Inclined	<0.01%	25	28	F	-	679296	5658857	11
SRBL16050	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS2	3	52	М	>5 - 10%	100-500	Well	Inclined	<0.01%	21	21	F	-	679768	5659197	11
SRBL16051	Improved Pasture	2016	CU.HR	FLUV(M)	TBRzz	DVFS2	2	32	L	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	23	0	G	-	679809	5659472	11
SRBL16052	Improved Pasture	2016	GLCU.HR	FLUV(M)	TBRzzgll	POT7	2	90	E	0.5 - 2.0%	100-500	Imperfect	Inclined	<0.01%	22	0	G	-	679352	5659547	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRBL16053	Improved Pasture	2016	GLCU.HR	FLUV(M)	TBRzzgl	POT7	1	58	E	0.5 - 2.0%	50-100	Imperfect	Level	<0.01%	25	0	G	-	679274	5659326	11
SRKF16001	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	FSH2	1	-	Е	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	20	25	G	-	677666	5657800	11
SRKF16002	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	FSH2	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	19	25	G	-	677796	5657767	11
SRKF16003	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	DVFS2	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	22	37	G	-	677857	5657764	11
SRKF16004	Improved Pasture	2016	CA.BLC	TILL(F)	DVGca	POT6	1	68	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	9	40	G	-	679163	5660448	11
SRKF16005	Improved Pasture	2016	GLR.BLC	GLLC(F)	FSHglzr	POT6	1	68	Т	0.5 - 2.0%	100-500	Imperfect	Inclined	<0.01%	18	0	G	-	679224	5660795	11
SRKF16006	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS1	3	78	Μ	>2.0 - 5.0%	50-100	Moderately Well	Undulating	<0.01%	31	25	Р	-	679951	5660631	11
SRKF16007	Improved Pasture	2016	O.HG	GLLC(M)\TILL(M)	POTcoxt	FSH2	1	12	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	30	35	Р	-	679859	5660600	11
SRKF16008	Improved Pasture	2016	CA.BLC	GLLC (MF)	FSHcaco	FSH2	2	24	М	0.5 - 2.0%	100-500	Moderately Well	Inclined	<0.01%	27	36	G	-	679838	5660492	11
SRKF16009	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	DVFS2	3	186	Μ	>2.0 - 5.0%	100-500	Imperfect	Inclined	<0.01%	26	29	G	26	679642	5660498	11
SRKF16010	Improved Pasture	2016	GL.BLC	GLLC(MF)\TILL(MF)	FSHglcoxt	FSH2	0	-	E	>2.0 - 5.0%	100-500	Imperfect	Inclined	<0.01%	34	29	Р	-	678600	5661047	11
SRKF16011	Improved Pasture	2016	CA.BLC	GLLC (MF)	FSHcaco	FSH2	2	180	U	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	17	26	G	-	678745	5661022	11
SRKF16012	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVG1	4	210	Μ	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	17	23	G	-	678930	5660929	11
SRKF16013	Improved Pasture	2016	R.BLC	TILL(MF)	DVGzrtk	DVG1	5	198	Μ	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	41	0	G	-	678931	5661024	11
SRKF16014	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	FSH2	1	-	E	0.5 - 2.0%	50-100	Imperfect	Level	<0.01%	26	32	G	30	678926	5660794	11
SRKF16015	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	FSH2	3	212	Μ	>2.0 - 5.0%	100-500	Imperfect	Inclined	<0.01%	22	17	Р	-	678817	5660774	11
SRKF16016	Improved Pasture	2016	CA.BLC	TILL(MF)	DVGca	DVFS2	3	198	Μ	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	28	14	G	-	678927	5660652	11
SRKF16017	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH2	3	184	U	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	21	32	G	-	678705	5660465	11
SRKF16018	Riparian	2016	R.HG	GLLC(MF)\TILL(MF)	POTzrcoxt	POT1	0	180	E	0.5 - 2.0%	50-100	Very Poor	Level	<0.01%	20	0	G	-	678781	5660460	11
SRKF16019	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH2	2	224	С	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	22	27	G	-	678352	5660453	11
SRKF16020	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	3	180	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	21	26	G	-	678184	5661418	11
SRKF16021	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	1	180	L	0.5 - 2.0%	50-100	Moderately Well	Inclined	<0.01%	22	26	G	-	677967	5661565	11
SRKF16022	Wetland	2016	R.HG	GLLC(F)	POTzr	POT6	1	180	D	0.5 - 2.0%	100-500	Poor	Inclined	<0.01%	25	0	G	0	677857	5661589	11
SRKF16023	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	POT6	1	180	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	23	23	G	-	677672	5661602	11
SRKF16024	Improved Pasture	2016	R.HG	GLLC(F)	POTzrxt	POT6	2	212	E	>2.0 - 5.0%	100-500	Poor	Inclined	<0.01%	20	15	G	0	677656	5661347	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRKF16025	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	POT7	4	352	М	>2.0 - 5.0%	100-500	Imperfect	Ridged	<0.01%	38	19	G	55	677335	5660714	11
SRKF16026	Improved Pasture	2016	R.HG	FLUV(M)\GLLC(F)	ZGW	POT7	4	20	L	>2.0 - 5.0%	100-500	Poor	Inclined	<0.01%	20	60	Р	50	677330	5660668	11
SRKF16027	Improved Pasture	2016	R.HG	FLUV(F)	ZGW	POT7	1	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	31	0	F	-	677172	5660879	11
SRKF16028	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	FSH1	5	68	М	>5 - 10%	50-100	Imperfect	Inclined	<0.01%	25	29	F	40	677172	5660815	11
SRKF16029	Improved Pasture	2016	R.BLC	GLLC(MF)	FSHzrcotk	FSH1	4	26	Μ	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	53	0	G	-	677165	5660687	11
SRKF16030	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	9	212	М	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	21	23	G	-	677192	5660972	11
SRKF16031	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHcatk	FSH1	15		U	>10 - 15%	100-500	Well	Inclined	<0.01%	40	35	G	-	677179	5661081	11
SRKF16032	Improved Pasture	2016	O.BLC	GLLC(F)	FSHtk	FSH2	2	176	E	0.5 - 2.0%	50-100	Moderately Well	Level	<0.01%	36	32	G	-	677247	5661135	11
SRKF16033	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHcatk	FSH1	3	12	М	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	36	26	G	-	676983	5660380	11
SRKF16034	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	5	34	М	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	25	39	G	-	676891	5660433	11
SRKF16035	Improved Pasture	2016	O.BLC	GLLC(MF)	FSHco	FSH1	4	182	М	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	32	26	G	-	676984	5660465	11
SRKF16036	Improved Pasture	2016	R.HG	FLUV(F)	ZGW	FSH2	0	-	E	0 - 0.5%	50-100	Poor	Level	<0.01%	30	0	G	-	676778	5660524	11
SRKF16037	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	4	180	Μ	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	33	14	G	-	676751	5660741	11
SRKF16038	Improved Pasture	2016	-	-	-	FSH1	-	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	-	-	-	-	677257	5660499	11
SRKF16039	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	5	58	Μ	>5 - 10%	100-500	Well	Inclined	<0.01%	23	20	F	-	677257	5660499	11
SRKF16040	Improved Pasture	2016	O.BLC	GLLC(MF)	FSHco	FSH2	1	-	С	>5 - 10%	50-100	Well	Inclined	<0.01%	32	22	G	-	677279	5660414	11
SRKF16041	Crop	2016	GL.BLC	GLLC(F)	FSHgl	POT2	1	-	E	0.5 - 2.0%	50-100	Imperfect	Level	<0.01%	17	23	G	100	677305	5660293	11
SRKF16042	Wetland	2016	R.HG	FLUV(MF)\TILL(M)	ZGW	POT7	0	-	D	0.5 - 2.0%	50-100	Poor	Level	<0.01%	20	50	Р	0	675935	5661791	11
SRKF16043	Wetland	2016	R.HG	FLUV(MF)\TILL(MF)	ZGW	POT7	1	248	E	>5 - 10%	50-100	Poor	Inclined	<0.01%	25	35	Р	10	676145	5661617	11
SRKF16044	Scrubland	2016	O.BLC	TILL(F)	DVGfitk	DVFS2	5	60	Μ	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	35	22	G	-	676008	5661438	11
SRKF16045	Improved Pasture	2016	CA.BLC	GLLC(MF)	FSHcaco	FSH1	5	184	М	>5 - 10%	50-100	Well	Inclined	<0.01%	26	30	G	-	676156	5661396	11
SRKF16046	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	6	226	М	>5 - 10%	50-100	Well	Inclined	<0.01%	25	44	G	-	676298	5661457	11
SRKF16048	Riparian	2016	R.HG	FLUV(MF)\GLLC(F)	ZGW	POT7	0	-	D	0.5 - 2.0%	100-500	Poor	Level	<0.01%	20	40	Р	0	676322	5661321	11
SRKF16049	Disturbed	2016	N/A	ANTH(F)\GLLC(F)	ZDL	FSH1	5	58	М	>5 - 10%	100-500	Imperfect	Inclined	<0.01%	12	0	G	37	676966	5661181	11
SRKF16050	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	7	358	Μ	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	24	37	G	-	676478	5661011	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRKF16051	Improved Pasture	2016 CA.BLC	GLLC(F)	FSHcatk	FSH1	3	76	L	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	49	7	F	-	676555	5660905	11
SRKF16052	Improved Pasture	2016 O.BLC	GLLC(F)	FSH	FSH2	0	-	E	>5 - 10%	100-500	Moderately Well	Level	<0.01%	25	11	F	-	676722	5660951	11
SRKF16053	Improved Pasture	2016 O.BLC	GLLC(MF)	FSHco	FSH1	3	238	М	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	24	15	F	-	676671	5661339	11
SRKF16054	Improved Pasture	2016 O.BLC	GLLC(MF)	FSHcotk	FSH1	1	56	L	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	42	21	G	-	676709	5661557	11
SRKF16055	Improved Pasture	2016 CA.BLC	TILL(MF)	DVGca	DVFS1	3	284	U	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	29	25	F	-	676747	5661646	11
SRKF16056	Improved Pasture	2016 CA.BLC	GLLC(F)	FSHca	FSH1	2	256	С	>15 - 30%	50-100	Well	Rolling	<0.01%	28	15	F	-	676981	5661439	11
SRKF16057	Improved Pasture	2016 R.BLC	GLLC(F)	FSHzrtk	FSH1	4	268	М	>10 - 15%	50-100	Moderately Well	Inclined	<0.01%	44	0	F	-	676993	5661346	11
SRKF16058	Improved Pasture	2016 GL.BLC	GLLC(F)	FSHgl	FSH2	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	25	25	G	43	677180	5661281	11
SRKF16059	Wetland	2016 R.HG	GLLC(F)	POTzr	POT2	0	-	D	0 - 0.5%	-	Poor	Level	<0.01%	15	20	Р	0	677324	5661274	11
SRKF16060	Improved Pasture	2016 GL.HR	FLUV(MF)\TILL(F)	TBRzzgl	POT7	3	270	L	>2.0 - 5.0%	50-100	Imperfect	Inclined	<0.01%	29	22	F	-	679190	5660310	11
SRKF16061	Improved Pasture	2016 O.BLC	TILL(MF)	DVG	DVFS2	1	56	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	30	28	F	-	679227	5660126	11
SRKF16062	Improved Pasture	2016 CA.BLC	GLLC(MF)	FSHcaco	FSH2	1	180	E	0.5 - 2.0%	100-500	Moderately Well	Inclined	0.01 - 0.1%	30	26	F	-	679240	5659879	11
SRKF16063	Improved Pasture	2016 O.HG	GLLC(F)	POT	POT6	0	-	D	0 - 0.5%	50-100	Poor	Level	<0.01%	27	20	Р	-	679255	5659673	11
SRKF16064	Improved Pasture	2016 GLCA.BLC	GLLC(MF)	FSHcaglco	POT6	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	38	14	F	30	679525	5659626	11
SRKF16065	Improved Pasture	2016 CA.BLC	GLLC(MF)	FSHcaco	FSH2	1	264	Μ	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	30	25	F	-	679634	5659653	11
SRKF16066	Riparian	2016 O.HG	FLUV(MF)	ZGW	POT7	0	-	D	0 - 0.5%	1-25	Poor	Level	<0.01%	15	20	F	0	679754	5659642	11
SRKF16067	Improved Pasture	2016 R.BLC	GLLC(MF)	FSHzrco	FSH2	0	-	E	0.5 - 2.0%	-	Moderately Well	Level	<0.01%	37	0	G	-	679857	5659658	11
SRKF16068	Improved Pasture	2016 CA.BLC	GLLC (MF)	FSHcaco	FSH2	2	56	U	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	27	20	F	-	679800	5659786	11
SRKF16069	Riparian	2016 O.HG	GLLC(MF)	POTco	FSH2	0	-	E	0.5 - 2.0%	-	Poor	Level	<0.01%	25	20	Р	0	679855	5659995	11
SRKF16070	Improved Pasture	2016 GLCA.BLC	GLLC(F)	FSHcagl	FSH2	2	12	М	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	24	22	F	40	679742	5660114	11
SRKF16071	Improved Pasture	2016 O.BLC	TILL(MF)	DVG	DVG1	3	264	М	>2.0 - 5.0%	50-100	Moderately Well	Undulating	<0.01%	24	19	Р	-	679850	5660223	11
SRKF16072	Improved Pasture	2016 CA.BLC	TILL(MF)	DVGca	DVG1	3	210	М	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	21	34	F	-	679677	5660307	11
SRKF16073	Improved Pasture	2016 GLCA.BLC	GLLC(F)	FSHcagl	FSH2	1	124	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	22	25	F	50	679506	5660312	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRKF16074	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	DVFS2	1	-	E	0.5 - 2.0%	50-100	Imperfect	Level	<0.01%	19	25	G	-	679330	5660333	11
SRKF16075	Improved Pasture	2016	CA.BLC	TILL(MF)	DVGcatk	ZDL	4	224	М	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	36	13	F	-	680326	5660182	11
SRKF16076	Improved Pasture	2016	CA.BLC	TILL(MF)	DVGca	ZDL	4	224	М	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	22	21	F	-	680443	5660224	11
SRKF16077	Improved Pasture	2016	O.BLC	TILL(MF)	DVGtk	ZDL	10	244	М	>5 - 10%	100-500	Well	Inclined	<0.01%	44	36	G	-	680618	5660115	11
SRKF16078	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVG1	6	244	М	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	23	21	F	-	680657	5659898	11
SRKF16079	Improved Pasture	2016	CA.BLC	TILL(MF)	DVGcatk	ZDL	3	244	U	>5 - 10%	100-500	Well	Inclined	<0.01%	44	15	G	-	680706	5659970	11
SRKF16080	Improved Pasture	2016	CA.BLC	TILL(F)	DVGcafi	DVG1	5	224	М	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	18	27	F	-	680027	5660250	11
SRKF16081	Improved Pasture	2016	GLCA.BLC	GLLC(MF)	FSHcacogl	FSH2	2	272	E	0.5 - 2.0%	100-500	Imperfect	Inclined	<0.01%	25	22	G	35	680024	5659962	11
SRKF16082	Improved Pasture	2016	R.HG	GLLC(MF)	POTzrco	POT7	0	-	D	0 - 0.5%	50-100	Poor	Level	0.1 - 3%	30	0	G	0	680058	5659842	11
SRKF16083	Improved Pasture	2016	R.HG	FLUV(F)	ZGWzr	POT7	1	-	E	0.5 - 2.0%	100-500	Poor	Level	<0.01%	40	0	Р	40	680147	5659676	11
SRKF16084	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	DVFS2	2	256	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	19	20	F	40	680282	5659757	11
SRKF16085	Improved Pasture	2016	O.BLC	TILL(MF)	DVGtk	DVG1	3	226	М	>2.0 - 5.0%	100-500	Moderately Well	Inclined	0.01 - 0.1%	39	14	F	-	680422	5659776	11
SRKF16086	Improved Pasture	2016	O.BLC	TILL(MF)	DVG	DVG1	1	-	Μ	0.5 - 2.0%	100-500	Well	Level	0.01 - 0.1%	26	19	F	-	680489	5659863	11
SRKF16087	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVFS1	2	22	Μ	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	30	29	F	-	679041	5659111	11
SRKF16088	Improved Pasture	2016	CA.BLC	TILL(F)	DVGcafitk	DVG1	20	170	Μ	>15 - 30%	50-100	Well	Inclined	<0.01%	50	25	F	-	679807	5658229	11
SRKF16089	Crop	2016	CA.BLC	TILL(F)	DVGcafi	DVFS2	5	206	Μ	>5 - 10%	100-500	Well	Inclined	0.01 - 0.1%	16	25	G	-	679775	5658351	11
SRKF16090	Crop	2016	O.BLC	TILL(F)	DVGfi	DVG1	3	180	E	>2.0 - 5.0%	50-100	Well	Undulating	<0.01%	28	14	G	-	679868	5658399	11
SRKF16091	Crop	2016	O.BLC	TILL(F)	DVGfi	DVG1	2	180	E	>2.0 - 5.0%	100-500	Moderately Well	Inclined	0.01 - 0.1%	28	27	G	68	679863	5658451	11
SRKF16092	Crop	2016	O.BLC	TILL(F)	DVGfi	DVFS2	3	52	Μ	>2.0 - 5.0%	100-500	Well	Inclined	0.01 - 0.1%	28	32	G	-	679826	5658518	11
SRKF16093	Crop	2016	O.BLC	TILL(F)	DVGfi	DVFS2	1	-	М	>2.0 - 5.0%	100-500	Well	Inclined	0.1 - 3%	18	29	Р	-	679808	5658578	11
SRKF16094	Crop	2016	O.BLC	TILL(F)	DVGfi	DVFS2	2	80	М	>2.0 - 5.0%	100-500	Well	Inclined	0.01 - 0.1%	25	23	G	-	679714	5658732	11
SRKF16095	Crop	2016	O.BLC	TILL(F)	DVGfi	DVFS2	3	48	U	>2.0 - 5.0%	100-500	Well	Inclined	0.01 - 0.1%	17	16	G	-	679622	5658625	11
SRKF16096	Crop	2016	O.BLC	TILL(F)	DVGfi	DVFS2	4	40	М	>2.0 - 5.0%	100-500	Well	Inclined	0.01 - 0.1%	17	22	G	-	679592	5658729	11
SRKF16097	Improved Pasture	2016	O.HR	FLUV(C)	MTB	MSTB1	20	210	М	>15 - 30%	100-500	Well	Inclined	<0.01%	15	0	G	-	679259	5658295	11
SRKF16098	Wetland	2016	O.HG	FLUV(M)	ZGW	ZGC1	0	-	E	0.5 - 2.0%	100-500	Poor	Level	<0.01%	56	0	Р	-	679310	5658105	11
SRKF16100	Woodland	2016	O.HG	FLUV(MC)\GLFL(VC)	ZGW	ZGC1	1	-	E	0.5 - 2.0%	100-500	Poor	Level	<0.01%	32	20	F	-	679365	5657849	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRKF16101	Floodplain	2016	GL.BLC	FLUV(MC)	SRCgltk	TBSR1	0	-	E	0 - 0.5%	100-500	Imperfect	Level	<0.01%	38	14	F	-	679249	5657752	11
SRKF16102	Woodland	2016	O.HG	FLUV(MC)\GLFL(VC)	ZGW	TBSR1	1	180	Е	0.5 - 2.0%	100-500	Poor	Level	<0.01%	17	27	F	-	679365	5657556	11
SRKF16103	Riparian	2016	O.HR	FLUV(VC)	TBRxg	TBRgr1	0	-	Е	0 - 0.5%	100-500	Rapid	Level	>50%	16	0	Р	-	679505	5657544	11
SRKF16104	Floodplain	2016	O.HG	FLUV(C)\GLFL(VC)	ZGWxg	TBRgr1	0	-	E	0 - 0.5%	1-25	Poor	Level	<0.01%	28	32	Р	-	679686	5657696	11
SRKF16105	Improved Pasture	2016	GL.BLC	FLUV(C)\GLFL(VC)	SRCglxgco	ZGC1	1	180	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	27	29	F	-	679851	5657932	11
SRKF16107	Wetland	2016	T.M	ORG(ME)\FLUV(M)	ZORxs	ZGC1	0	-	D	0 - 0.5%	50-100	Very Poor	Level	<0.01%	80	0	G	0	679487	5658043	11
SRKF16108	Wetland	2016	R.HG	ORG(ME)\FLUV(MC)	ZGWpt	ZGC1	0	-	E	0 - 0.5%	500-1000	Very Poor	Level	<0.01%	30	0	G	20	679726	5657920	11
SRKF16109	Wetland	2016	R.HG	FLUV(MC)	ZGW	ZGC1	0	-	E	0 - 0.5%	100-500	Very Poor	Level	<0.01%	18	0	G	0	679695	5658060	11
SRKF16110	Improved Pasture	2016	R.HG	GLLC(F)	POTzr	POT2	1	-	E	0.5 - 2.0%	100-500	Poor	Level	<0.01%	40	0	G	0	680969	5658532	11
SRKF16111	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS2	2	12	Μ	>2.0 - 5.0%	25-50	Moderately Well	Inclined	<0.01%	19	28	G	-	680889	5658385	11
SRKF16112	Improved Pasture	2016	GLCA.BLC	TILL(F)	DVGcaglfi	DVG1	25	200	Μ	>15 - 30%	25-50	Imperfect	Inclined	<0.01%	17	36	Р	-	680906	5658241	11
SRKF16113	Forested Range	2016	CA.BLC	TILL(F)	DVGcafi	DVG1	2	-	Μ	>2.0 - 5.0%	1-25	Well	Inclined	<0.01%	14	27	F	-	680885	5658126	11
SRKF16114	Riparian	2016	O.R	FLUV(VC)	TBRaagr	TBRgr1	0	-	E	0 - 0.5%	100-500	Rapid	Level	>50%	0	0	N/A	-	680919	5658102	11
SRKF16115	Woodland	2016	R.BLC	GLFL(VC)	TBRxg	TBR4	1	-	E	0.5 - 2.0%	100-500	Rapid	Level	0.1 - 3%	16	0	F	-	681033	5658234	11
SRKF16116	Riparian	2016	O.R	FLUV(VC)	TBRaagr	TBRgr1	0	-	E	0 - 0.5%	100-500	Rapid	Level	>50%	0	0	N/A	-	681330	5658300	11
SRKF16117	Improved Pasture	2016	CA.BLC	TILL(F)	DVGcafi	DVG1	0	-	E	0 - 0.5%	1-25	Well	Level	<0.01%	23	26	F	-	681405	5658351	11
SRKF16118	Improved Pasture	2016	O.HG	TILL(F)	POTzz	POT1	1	-	E	0.5 - 2.0%	100-500	Poor	Level	<0.01%	25	21	G	45	681476	5658462	11
SRKF16119	Improved Pasture	2016	CA.BLC	TILL(MF)	DVGcatk	TBR6	0	-	E	0.5 - 2.0%	50-100	Moderately Well	Level	<0.01%	36	17	F	-	681444	5658817	11
SRKF16120	Improved Pasture	2016	O.BLC	TILL(MF)	DVG	DVFS1	0	-	E	0 - 0.5%	100-500	Moderately Well	Level	0.01 - 0.1%	22	30	F	-	681332	5658775	11
SRKF16121	Improved Pasture	2016	O.HG	TILL(F)	POTzz	POT1	0	-	Е	0.5 - 2.0%	100-500	Poor	Level	<0.01%	25	18	G	60	681247	5658721	11
SRKF16122	Hayland	2016	O.BLC	GLLC(F)	FSH	FSH2	1	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	0.01 - 0.1%	24	23	F	-	681060	5658591	11
SRKF16123	Scrubland	2016	CA.BLC	FLUV(M)	SRCcatk	SRC4	0	-	D	0.5 - 2.0%	25-50	Moderately Well	Level	<0.01%	41	14	F	-	678946	5657750	11
SRKF16124	Riparian	2016	CA.BLC	FLUV(M)\FLUV(MC)	SRCca	TBSR1	1	170	М	0.5 - 2.0%	50-100	Well	Level	0.01 - 0.1%	18	6	F	-	679164	5657567	11
SRKF16125	Improved Pasture	2016	CU.R	FLUV(M)\GLFL(VC)	SRCxg	SRC4	0	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	0.01 - 0.1%	0	0	N/A	-	678785	5657621	11
SRKF16126	Wetland	2016	T.M	ORG(ME)\LACU(F)	ZORxc	ZGC1	0	-	E	0.5 - 2.0%	25-50	Poor	Level	<0.01%	70	0	G	90	679098	5658143	11
SRKF16127	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	5	210	U	>10 - 15%	50-100	Well	Hummocky	0.01 - 0.1%	21	44	F	-	678632	5657877	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRKF16128	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	2	115	L	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	21	19	F	-	678524	5657862	11
SRKF16129	Improved Pasture	2016	R.BLC	GLLC(MF)\TILL(F)	FSHzrxt	DVFS1	14	145	Μ	>10 - 15%	25-50	Moderately Well	Inclined	0.01 - 0.1%	43	0	F	-	678911	5658038	11
SRKF16130	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	4	225	М	>5 - 10%	100-500	Well	Inclined	0.01 - 0.1%	22	25	F	-	678984	5658330	11
SRKF16131	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS1	11	260	М	>10 - 15%	50-100	Well	Hummocky	<0.01%	28	18	F	-	678972	5658541	11
SRKF16132	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH2	2	210	Μ	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	23	21	F	-	678538	5658593	11
SRKF16133	Improved Pasture	2016	CA.BLC	GLLC(F)\TILL(F)	FSHcaxttk	FSH2	2	190	Μ	>2.0 - 5.0%	50-100	Moderately Well	Undulating	<0.01%	42	27	F	-	678466	5658309	11
SRKF16134	Scrubland	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	DVFS2	2	100	Μ	>2.0 - 5.0%	50-100	Moderately Well	Undulating	<0.01%	31	25	G	-	678326	5658334	11
SRKF16135	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	DVFS2	7	145	М	>5 - 10%	100-500	Well	Inclined	0.01 - 0.1%	16	39	G	-	678199	5658524	11
SRKF16136	Wetland	2016	R.HG	GLLC(F)	POTzr	POT1	2	30	L	>5 - 10%	100-500	Poor	Inclined	<0.01%	33	0	G	-	678343	5658646	11
SRKF16137	Improved Pasture	2016	O.BLC	TILL(F)	DVGfitk	DVFS2	3	45	Μ	>5 - 10%	50-100	Well	Inclined	0.01 - 0.1%	39	16	F	-	678830	5658706	11
SRKF16138	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	FSH2	2	45	М	>5 - 10%	100-500	Well	Inclined	<0.01%	34	23	F	-	679029	5658724	11
SRKF16139	Improved Pasture	2016	O.HR	FLUV(MC)\FLUV(MC)	TBRxg	SRC1	1	25	E	0.5 - 2.0%	100-500	Well	Level	<0.01%	70	0	Р	-	677056	5655213	11
SRKF16140	Woodland	2016	CU.HR	FLUV(MC)	TBR	TBR2	2	260	М	0.5 - 2.0%	100-500	Well	Inclined	<0.01%	22	0	F	-	676980	5655325	11
SRKF16141	Riparian	2016	O.HR	TILL(F)	MTB	DVG1	47	130	Т	>45 - 70%	50-100	Well	Inclined	0.1 - 3%	25	0	F	-	676762	5655877	11
SRKF16142	Floodplain	2016	O.R	FLUV(VC)	TBRaagr	TBRgr1	0	-	E	0.5 - 2.0%	25-50	Well	Terraced	>50%	0	0	N/A	-	676776	5655852	11
SRKF16143	Improved Pasture	2016	O.BLC	TILL(MF)	DVG	DVFS2	10	145	М	>5 - 10%	100-500	Well	Inclined	0.01 - 0.1%	20	18	F	-	676730	5656204	11
SRKF16144	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVG1	3	45	М	>2.0 - 5.0%	100-500	Well	Undulating	0.01 - 0.1%	32	16	F	-	676954	5656706	11
SRKF16145	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	DVG1	2	54	М	>2.0 - 5.0%	50-100	Well	Undulating	<0.01%	30	20	F	-	676947	5656948	11
SRKF16146	Scrubland	2016	O.BLC	GLLC(F)	FSH	FSH2	2	80	Μ	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	29	15	G	-	678162	5658011	11
SRKF16147	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH2	2	245	М	0.5 - 2.0%	50-100	Moderately Well	Inclined	<0.01%	25	20	G	-	678026	5658184	11
SRKF16148	Wetland	2016	R.HG	ORG(HU)\FLUV(F)	ZGWpt	ZGC1	0	-	D	0.5 - 2.0%	25-50	Poor	Level	<0.01%	70	0	G	10	677996	5658154	11
SRKF16149	Native Range	2016	CA.BLC	TILL(MF)	DVGca	DVG1	8	230	U	>15 - 30%	50-100	Well	Inclined	0.01 - 0.1%	18	18	F	-	682156	5658996	11
SRKF16150	Woodland	2016	O.HR	GLFL(VC)	TBRgr	TBR6	0	-	E	0.5 - 2.0%	25-50	Well	Level	0.1 - 3%	20	0	Р	-	681918	5658937	11
SRKF16151	Scrubland	2016	R.BLC	TILL(MF)	DVGzrtk	POT6	0	-	E	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	41	0	G	-	681940	5658788	11
SRKF16152	Scrubland	2016	O.HR	GLFL(M)	TBRfixg	TBR6	0	-	E	0.5 - 2.0%	50-100	Well	Level	0.1 - 3%	26	0	Р	-	682101	5658819	11
SRKF16153	Scrubland	2016	CA.BLC	GLFL(MC)	SUDfigr	TBR2	0	-	E	0.5 - 2.0%	50-100	Well	Terraced	0.01 - 0.1%	21	29	F	-	682296	5658579	11

Attachment C Soils Data Attachment March 2018

Table C-16 Soil Site

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness
SRKF16154	Riparian	2016	O.R	FLUV(VC)	TBRaaxg	TBRgr1	0	-	E	0.5 - 2.0%	50-100	Well	Level	3 - 15%	0
SRKF16155	Floodplain	2016	O.R	FLUV(MC)	TBRaaxg	TBR1	0	-	E	0.5 - 2.0%	100-500	Well	Level	3 - 15%	0
SRKF16156	Wetland	2016	GL.BLC	TILL(F)	DVGglfi	POT2	0	-	D	>2.0 - 5.0%	50-100	Imperfect	Undulating	0.01 - 0.1%	15
SRKF16157	Scrubland	2016	GL.BLC	GLLC(F)	FSHgl	FSH2	2	60	L	>2.0 - 5.0%	50-100	Imperfect	Inclined	<0.01%	26
SRKF16158	Improved Pasture	2016	O.BLC	TILL(MF)	DVG	DVFS2	3	40	М	>2.0 - 5.0%	100-500	Well	Undulating	0.01 - 0.1%	31
SRKF16159	Hayland	2016	O.BLC	TILL(MF)	DVG	DVG1	3	40	М	>2.0 - 5.0%	100-500	Well	Inclined	0.1 - 3%	20
SRKF16160	Wetland	2016	R.HG	GLLC(MF)	POTzrco	POT2	0	-	D	0.5 - 2.0%	25-50	Poor	Level	<0.01%	32
SRKF16161	Hayland	2016	O.BLC	TILL(MF)	DVGtk	DVG1	2	30	М	>2.0 - 5.0%	50-100	Well	Undulating	0.01 - 0.1%	44
SRKF16162	Riparian	2016	R.HG	FLUV(MF)\FLUV(MF)	ZGWxg	POT6	1	360	D	0.5 - 2.0%	500-1000	Poor	Level	<0.01%	47
SRKF16163	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVG1	2	210	М	>2.0 - 5.0%	100-500	Well	Inclined	0.01 - 0.1%	18
SRKF16164	Scrubland	2016	O.BLC	GLLC(F)	FSH	DVFS2	0	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	24
SRKF16165	Wetland	2016	R.HG	ORG(ME)\GLLC(F)	POTzrpt	POT1	0	-	D	0 - 0.5%	100-500	Poor	Level	<0.01%	50
SRKF16166	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVFS2	0	-	E	>2.0 - 5.0%	50-100	Well	Undulating	<0.01%	26
SRKF16167	Improved Pasture	2016	CA.BLC	FLUV(M)\GLLC(F)	SRCcaxc	POT7	0	-	E	>2.0 - 5.0%	50-100	Moderately Well	Undulating	<0.01%	29
SRKF16168	Riparian	2016	O.HG	FLUV(MF)	ZGW	POT7	0	-	E	0.5 - 2.0%	500-1000	Poor	Level	<0.01%	31
SRKF16169	Improved Pasture	2016	O.BLC	TILL(F)	DVGfi	DVFS2	0	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	26
SRKF16170	Scrubland	2016	GLR.BLC	GLLC(MF)	FSHglzrco	DVFS2	2	160	L	0.5 - 2.0%	25-50	Imperfect	Inclined	<0.01%	17
SRKF16171	Scrubland	2016	O.BLC	GLLC(MF)	FSHco	DVFS2	2	330	М	>2.0 - 5.0%	25-50	Moderately Well	Undulating	<0.01%	29
SRKF16172	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS2	3	30	М	>2.0 - 5.0%	500-1000	Well	Inclined	0.01 - 0.1%	25
SRKF16173	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	0	-	E	0.5 - 2.0%	50-100	Well	Inclined	0.01 - 0.1%	25
SRKF16174	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS2	3	30	М	>5 - 10%	100-500	Well	Inclined	<0.01%	27
SRKF16175	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS2	2	40	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	34
SRKF16176	Improved Pasture	2016	O.BLC	GLLC(F)\TILL(F)	FSHxt	DVFS2	0	-	С	0.5 - 2.0%	50-100	Well	Level	0.01 - 0.1%	20
SRKF16177	Improved Pasture	2016	GLCA.BLC	GLLC(MF)	FSHcacogl	POT6	0	-	E	0.5 - 2.0%	50-100	Imperfect	Level	<0.01%	25
SRKF16178	Improved Pasture	2016	CU.HR	FLUV(M)	TBRzz	POT7	0	-	E	0.5 - 2.0%	500-1000	Moderately Well	Level	<0.01%	27
SRKF16179	Improved Pasture	2016	CA.BLC	GLLC(MF)	FSHcaco	DVFS2	1	170	L	0.5 - 2.0%	25-50	Moderately Well	Level	<0.01%	21
SRKF16180	Wetland	2016	R.HG	FLUV(M)	ZGW	POT7	1	150	T	0.5 - 2.0%	50-100	Poor	Inclined	<0.01%	25

Seepage / Water Table Depth (cm)

Easting

UTM Zone

Northing

Subsoil Thickness

TS/SS Contrast

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRWC16001	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	DVFS1	24		U	>15 - 30%	50-100	Well	Inclined	<0.01%	21	28	G	-	676036	5655218	11
SRWC16002	Riparian	2016	GL.BLC	GLLC(F)	FSHgl	POT7	2	36	E	>30 - 45%	25-50	Imperfect	Inclined	<0.01%	17	29	Р	-	676222	5655196	11
SRWC16003	Woodland	2016	CA.BLC	FLUV(M)\GLFL(M)	SRCcaxg	TBSR1	1	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	33	17	Ρ	-	676259	5654900	11
SRWC16004	Riparian	2016	O.R	FLUV(VC)	TBRaagr	TBRgr1	1	28	E	0.5 - 2.0%	500-1000	Rapid	Level	>50%	0	0	N/A	-	676556	5655193	11
SRWC16005	Riparian	2016	CU.R	GLFL(VC)	TBRxg	TBSR1	22		С	>15 - 30%	1-25	Well	Ridged	3 - 15%	3	0	N/A	-	676524	5655143	11
SRWC16006	Riparian	2016	O.R	FLUV(VC)	TBRaaxg	TBRgr1	1	28	E	0.5 - 2.0%	100-500	Rapid	Level	15 - 50%	0	0	N/A	-	676438	5655088	11
SRWC16007	Improved Pasture	2016	CU.R	GLFL(VC)	TBRxg	TBSR1	1	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	0	0	N/A	-	676361	5655104	11
SRWC16008	Improved Pasture	2016	CU.R	GLFL(M)	SRCzr	TBRgr1	1	12	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	0	0	N/A	-	676279	5655111	11
SRWC16009	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	2	190	М	0.5 - 2.0%	50-100	Well	Undulating	<0.01%	21	20	G	-	676011	5655253	11
SRWC16010	Improved Pasture	2016	R.BLC	GLLC(F)	FSHzr	DVFS2	1	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	33	0	F	-	679197	5660613	11
SRWC16011	Improved Pasture	2016	R.HG	FLUV(M)	ZGW	POT6	2	200	D	0.5 - 2.0%	100-500	Poor	Inclined	<0.01%	35	0		-	679273	5660905	11
SRWC16012	Improved Pasture	2016	R.BLC	GLLC(F)	FSHzr	DVFS2	4	30	М	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	21	28	Р	-	679427	5660782	11
SRWC16013	Improved Pasture	2016	R.HG	GLLC(F)	POTzr	POT1	3	20	D	>2.0 - 5.0%	100-500	Poor	Inclined	<0.01%	45	0	G	-	679594	5660697	11
SRWC16014	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	DVFS2	1	180	Μ	0.5 - 2.0%	100-500	Moderately Well	Inclined	<0.01%	15	27	F	-	679387	5660467	11
SRWC16015	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	2	-	E	0.5 - 2.0%	100-500	Well	Level	<0.01%	16	32	F	-	678497	5661067	11
SRWC16016	Improved Pasture	2016	CA.BLC	-	-	FSH2	2	335	Μ	0.5 - 2.0%	50-100	Well	Inclined	<0.01%	24	26	F	-	678386	5660949	11
SRWC16017	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH2	2	20	Μ	0.5 - 2.0%	50-100	Well	Inclined	<0.01%	24	26	G	-	678386	5660948	11
SRWC16018	Improved Pasture	2016	R.HG	GLLC(F)	POTzr	POT6	2	300	D	>2.0 - 5.0%	50-100	Poor	Inclined	<0.01%	27	12	G	-	678362	5660872	11
SRWC16019	Improved Pasture	2016	R.BLC	GLLC(F)	FSHzr	POT6	3		L	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	27	17	Ρ	-	678244	5660909	11
SRWC16020	Improved Pasture	2016	R.BLC	GLLC(F)	FSHzr	FSH2	2	30	L	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	32	0	G	-	678432	5660733	11
SRWC16021	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	FSH2	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	16	32	G	-	678405	5660594	11
SRWC16022	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	1	-	E	0.5 - 2.0%	50-100	Well	Level	<0.01%	26	20	G	-	678383	5660515	11
SRWC16023	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	FSH2	4	30	L	>2.0 - 5.0%	100-500	Imperfect	Inclined	<0.01%	16	23	G	-	678409	5661313	11
SRWC16024	Improved Pasture	2016	O.HG	GLLC(F)\TILL(MC)	POTxt	POT1	2	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	22	19	G	-	678278	5661193	11
SRWC16025	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH2	2	-	E	0.5 - 2.0%	50-100	Well	Level	0.01 - 0.1%	32	17	F	-	678114	5661245	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification		Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRWC16026	Improved Pasture	2016	GL.BLC	GLLC(F)		FSHgl	FSH2	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	27	17	G	-	677495	5661593	11
SRWC16027	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	1	-	E	0.5 - 2.0%	50-100	Well	Level	<0.01%	27	16	F	-	677511	5661391	11
SRWC16028	Improved Pasture	2016	GLCA.BLC	GLLC(F)		FSHcagl	FSH2	1	67	L	0.5 - 2.0%	50-100	Imperfect	Inclined	<0.01%	18	27	F	-	677841	5661301	11
SRWC16029	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	-	-	L	0.5 - 2.0%	50-100	Moderately Well	Inclined	<0.01%	25	20	F	-	678021	5661008	11
SRWC16030	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	2	340	L	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	27	22	F	-	677756	5661035	11
SRWC16031	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	1	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	14	27	F	-	677869	5661046	11
SRWC16032	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	POT6	1	345	L	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	26	13	F	-	677638	5661037	11
SRWC16033	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	1	-	E	0.5 - 2.0%	50-100	Well	Level	<0.01%	21	23	G	-	677519	5661053	11
SRWC16034	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	1	-	E	0.5 - 2.0%	100-500	Well	Level	<0.01%	29	14	F	-	677540	5660935	11
SRWC16035	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	1	15	М	0.5 - 2.0%	100-500	Well	Inclined	<0.01%	32	9	F	-	677567	5660842	11
SRWC16036	Improved Pasture	2016	R.HG	GLLC(F)		POTzr	POT7	1	-	D	0.5 - 2.0%	50-100	Poor	Level	<0.01%	26	17	F	-	677572	5660705	11
SRWC16037	Improved Pasture	2016	R.BLC	GLLC(F)		FSHzr	FSH1	8	40	U	>5 - 10%	50-100	Well	Inclined	<0.01%	22	0	G	-	677680	5660698	11
SRWC16038	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	2	120	Ε	0.5 - 2.0%	50-100	Well	Level	<0.01%	24	15	F	-	677777	5660623	11
SRWC16039	Improved Pasture	2016	R.HG	GLLC(F)		POTzr	POT7	4	80	D	>2.0 - 5.0%	50-100	Poor	Inclined	<0.01%	28	17	Р	-	678047	5660425	11
SRWC16040	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH1	1	-	E	>2.0 - 5.0%	50-100	Well	Level	<0.01%	20	9	F	-	677761	5660476	11
SRWC16041	Improved Pasture	2016	CA.BLC	GLLC(F)		FSHca	FSH1	9	345	М	>5 - 10%	50-100	Well	Inclined	<0.01%	30	10	G	-	677272	5660575	11
SRWC16042	Improved Pasture	2016	CA.BLC	GLLC(F)		FSHca	FSH1	8	25	U	>5 - 10%	50-100	Well	Inclined	<0.01%	26	15	F	-	678120	5660442	11
SRWC16043	Improved Pasture	2016	GL.BLC	GLLC(F)		FSHgl	FSH2	5	35	L	>2.0 - 5.0%	100-500	Imperfect	Inclined	<0.01%	26	13	F	-	678094	5660563	11
SRWC16044	Improved Pasture	2016	R.HG	GLLC(F)		POTzr	POT1	1	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	25	0		-	678147	5660719	11
SRWC16045	Improved Pasture	2016	R.BLC	GLLC(F)		FSHzrtk	POT7	4	40	L	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	41	0	G	-	678209	5660224	11
SRWC16046	Improved Pasture	2016	R.BLC	GLLC(F)		FSHzr	FSH1	6	55	L	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	14	0	G	-	678190	5660081	11
SRWC16047	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH2	5	60	М	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	22	16	G	-	678234	5659976	11
SRWC16048	Improved Pasture	2016	CA.BLC	GLLC(F)		FSHca	FSH1	4	80	L	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	32	13	F	-	678179	5659827	11
SRWC16049	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH1	6	45	М	>5 - 10%	100-500	Well	Inclined	<0.01%	27	16	F	-	678200	5659566	11
SRWC16050	Improved Pasture	2016	O.BLC	GLLC(F)		FSH	FSH1	5	345	Μ	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	23	16	F	-	677837	5659792	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRWC16051	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	POT6	-	-	L	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	28	9	F	-	677728	5659790	11
SRWC16052	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	4	40	М	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	26	15	F	-	677910	5660312	11
SRWC16053	Improved Pasture	2016	O.HG	GLFL(M)\GLLC(F)	ZGWxc	POT7	4	-	L	>2.0 - 5.0%	50-100	Poor	Inclined	<0.01%	25	33	Р	-	677739	5660244	11
SRWC16054	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	3	45	U	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	19	18	G	-	677563	5660098	11
SRWC16055	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	3	-	Μ	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	33	27	F	-	677620	5659906	11
SRWC16056	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	2	65	U	0.5 - 2.0%	50-100	Well	Inclined	<0.01%	33	10	F	-	677609	5660288	11
SRWC16057	Improved Pasture	2016	O.HG	GLLC(F)	POT	POT7	1	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	23	32	Р	-	678007	5660287	11
SRWC16058	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	1	225	М	0.5 - 2.0%	50-100	Moderately Well	Inclined	0.01 - 0.1%	24	51	F	-	677276	5660227	11
SRWC16059	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	2	35	М	0.5 - 2.0%	50-100	Moderately Well	Inclined	<0.01%	25	20	F	-	677220	5660178	11
SRWC16060	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	2	45	М	0.5 - 2.0%	50-100	Well	Inclined	<0.01%	28	32	G	-	678341	5660311	11
SRWC16061	Improved Pasture	2016	O.HG	GLLC(F)	POT	POT6	1	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	24	61	F	-	678358	5660117	11
SRWC16062	Improved Pasture	2016	R.BLC	GLLC(F)	FSHzr	FSH1	3	105	U	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	27	0	G	-	678391	5659761	11
SRWC16063	Improved Pasture	2016	R.BLC	GLLC(F)	FSHzr	POT7	12	45	L	>10 - 15%	1-25	Moderately Well	Inclined	<0.01%	20	0	G	-	678521	5659805	11
SRWC16064	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	FSH2	6	50	L	>5 - 10%	50-100	Imperfect	Inclined	<0.01%	33	14	F	-	678609	5659714	11
SRWC16065	Improved Pasture	2016	R.HG	GLLC(MF)	POTzrco	POT7	2	50	D	0.5 - 2.0%	50-100	Poor	Level	<0.01%	35	0	F	-	678847	5659667	11
SRWC16066	Improved Pasture	2016	O.HG	GLLC(F)	POT	POT7	1	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	29	46	F	-	678889	5659659	11
SRWC16067	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	5	50	Μ	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	19	22	F	-	678937	5659696	11
SRWC16068	Improved Pasture	2016	R.BLC	GLLC(F)	FSHzr	FSH2	1	-	E	0.5 - 2.0%	50-100	Well	Level	<0.01%	31	0	G	-	679059	5659758	11
SRWC16069	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH2	2	-	E	0.5 - 2.0%	100-500	Moderately Well	Level	<0.01%	27	20	Р	-	678872	5659866	11
SRWC16070	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	POT6	2	60	L	0.5 - 2.0%	50-100	Moderately Well	Inclined	<0.01%	22	20	Р	-	678913	5660040	11
SRWC16071	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	FSH2	3	70	D	>2.0 - 5.0%	100-500	Imperfect	Inclined	<0.01%	32	15	Р	-	678802	5660240	11
SRWC16072	Improved Pasture	2016	CA.BLC	GLLC(MF)	FSHcaco	FSH2	1	45	М	0.5 - 2.0%	50-100	Moderately Well	Inclined	<0.01%	15	20	F	-	678666	5660276	11
SRWC16073	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	FSH2	2	90	L	0.5 - 2.0%	1-25	Imperfect	Inclined	<0.01%	19	12	Р	-	678902	5660165	11
SRWC16074	Improved Pasture	2016	GLCA.BLC	GLLC(F)	FSHcagl	FSH2	2	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	21	24	F	-	678577	5660322	11
SRWC16075	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	FSH2	1	40	L	0.5 - 2.0%	100-500	Imperfect	Inclined	<0.01%	17	38	Р	-	678465	5660288	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year	Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRWC16076	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS2	2	40	М	0.5 - 2.0%	50-100	Well	Inclined	<0.01%	27	31	G	-	678869	5658873	11
SRWC16077	Improved Pasture	2016	O.BLC	GLLC(F)	FSHtk	DVFS2	3	350	L	>2.0 - 5.0%	100-500	Moderately Well	Inclined	<0.01%	55	15	F	-	678684	5658778	11
SRWC16078	Improved Pasture	2016	O.BLC	GLLC(MF)	FSHcotk	FSH1	6	80	Μ	>5 - 10%	50-100	Moderately Well	Inclined	<0.01%	40	20	F	-	678624	5658905	11
SRWC16079	Improved Pasture	2016	GL.BLC	GLLC(F)	FSHgl	FSH1	9	30	L	>5 - 10%	100-500	Imperfect	Inclined	<0.01%	26	41	F	-	678635	5659066	11
SRWC16080	Improved Pasture	2016	CA.BLC	GLLC(F)	FSHca	FSH1	9	80	М	>5 - 10%	50-100	Well	Inclined	<0.01%	16	42	F	-	678389	5658829	11
SRWC16081	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	ZDL	8	340	М	>5 - 10%	100-500	Well	Inclined	<0.01%	22	45	G	-	678518	5658789	11
SRWC16082	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH2	4	233	М	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	26	24	G	-	679064	5659504	11
SRWC16083	Improved Pasture	2016	O.HG	GLLC(F)	POT	POT7	2	158	D	0.5 - 2.0%	50-100	Poor	Inclined	<0.01%	30	15	Р	-	679093	5659433	11
SRWC16084	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	3	350	Μ	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	27	31	F	-	679081	5659353	11
SRWC16085	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS1	3	30	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	30	32	F	-	678662	5659277	11
SRWC16086	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	DVFS1	3	11	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	31	31	F	-	678745	5659398	11
SRWC16087	Improved Pasture	2016	O.BLC	GLLC(F)	FSH	FSH1	4	50	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	30	11	G	-	678784	5659481	11
SRWC16088	Improved Pasture	2016	O.HG	GLLC(F)	POT	POT7	6	10	D	>5 - 10%	50-100	Poor	Inclined	<0.01%	21	19	F	-	678894	5659488	11
SRWC16089	Improved Pasture	2016	O.HG	GLLC(F)	POT	FSH2	6	-	D	>5 - 10%	100-500	Poor	Inclined	<0.01%	29	41	Р	-	678167	5658773	11
SRWC16090	Crop	2016	O.BLC	TILL(F)	DVGfi	DVFS2	1	270	L	0.5 - 2.0%	100-500	Well	Inclined	0.1 - 3%	25	45	G	-	679293	5658721	11
SRWC16091	Hayland	2016	O.BLC	TILL(F)	DVGfi	DVFS2	3	95	L	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	27	31	G	-	679273	5658613	11
SRWC16092	Hayland	2016	O.BLC	GLLC(F)	FSH	FSH2	4	18	М	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	25	42	G	-	679271	5658466	11
SRWC16093	Improved Pasture	2016	O.BLC	GLLC(F)	FSHst	ZDL	2	50	Μ	0.5 - 2.0%	100-500	Well	Inclined	0.01 - 0.1%	27	40	G	-	680250	5658299	11
SRWC16094	-	2016	O.BLC	GLLC(F)	FSH	FSH1	4	23	Μ	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	23	33	G	-	680239	5658336	11
SRWC16095	Hayland	2016	O.BLC	GLLC(F)	FSH	FSH1	1	21	М	0.5 - 2.0%	100-500	Well	Inclined	<0.01%	27	25	G	-	680208	5658438	11
SRWC16096	Hayland	2016	O.BLC	GLLC(F)	FSH	FSH2	3	7	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	27	26	G	-	680236	5658495	11
SRWC16097	Hayland	2016	O.HG	GLLC(F)	POT	POT2	1	340	D	0.5 - 2.0%	50-100	Poor	Undulating	<0.01%	20	42	G	-	680319	5658635	11
SRWC16098	Hayland	2016	GL.BLC	-	FSHgl	FSH2	1	109	L	0.5 - 2.0%	100-500	Imperfect	Undulating	<0.01%	19	25	G	-	680626	5658675	11
SRWC16099	Hayland	2016	O.BLC	GLLC(F)	FSH	FSH2	1	-	E	0.5 - 2.0%	100-500	Well	Level	<0.01%	29	22	G	-	680729	5658536	11
SRWC16100	Hayland	2016	O.HG	GLLC(F)	POT	POT1	1	276	L	0.5 - 2.0%	50-100	Poor	Undulating	<0.01%	18	21	F	-	680717	5658428	11
SRWC16101	Hayland	2016	O.BLC	GLLC(F)	FSH	FSH2	1	348	Μ	0.5 - 2.0%	25-50	Moderately Well	Undulating	<0.01%	29	41	Р	-	680758	5658349	11
SRWC16102	Hayland	2016	O.HG	TILL(F)	POTzz	POT2	1	330	D	0.5 - 2.0%	1-25	Poor	Undulating	<0.01%	16	49	F	-	680759	5658229	11
SRWC16103	Hayland	2016	CA.BLC	GLLC(MF)	FSHcacotk	FSH1	1	36	М	0.5 - 2.0%	50-100	Well	Inclined	<0.01%	53	37	F	-	680645	5658093	11

Attachment C Soils Data Attachment March 2018

Soil Site ID	Land Use	Year Soil Classification	Parent Material	Soil Series	Map Unit	Slope Gradient (%)	Aspect	Site Slope Position Code	Slope Range	Slope Length (m)	Drainage	Surface Expression	Surface Stoniness	Topsoil Thickness	Subsoil Thickness	TS/SS Contrast	Seepage / Water Table Depth (cm)	Easting	Northing	UTM Zone
SRWC16104	Riparian	2016 O.BLC	GLLC(F)	FSHer	DVG1	65	184	М	>45 - 70%	25-50	Well	Steep	<0.01%	0	26	N/A	-	680573	5658015	11
SRWC16105	Riparian	2016 GL.R	FLUV(VC)\FLUV(VC)	TBRaaglxg	TBRgr2	1	-	E	0.5 - 2.0%	50-100	Imperfect	Level	<0.01%	0	0	N/A	-	680476	5657968	11
SRWC16106	Floodplain	2016 O.R	GLFL(VC)	TBRaagr	TBRgr1	1	-	E	0.5 - 2.0%	50-100	Rapid	Level	>50%	0	0	N/A	-	680235	5657817	11
SRWC16107	Woodland	2016 GL.R	FLUV(C)\FLUV(M)	TBRgl	TBRgr2	1	-	E	0.5 - 2.0%	50-100	Imperfect	Level	0.1 - 3%	0	0	N/A	-	680157	5657919	11
SRWC16108	Floodplain	2016 O.R	FLUV(VC)\FLUV(M)	TBRaa	TBSR1	1	-	E	0.5 - 2.0%	50-100	Well	Level	<0.01%	0	0	N/A	-	680037	5657976	11
SRWC16109	Floodplain	2016 O.HG	FLUV(M)\FLUV(VC)\GLLC(F)	ZGWgryc	TBSR1	1	-	E	0.5 - 2.0%	50-100	Poor	Level	<0.01%	24	26	F	-	680163	5658076	11
SRWC16110	Riparian	2016 CA.BLC	GLLC(F)	FSHcaer	ZDL	22	222	М	>15 - 30%	25-50	Moderately Well	Steep	<0.01%	0	24	N/A	-	680203	5658105	11
SRWC16111	Improved Pasture	2016 O.BLC	TILL(F)	DVGfi	DVG1	12	209	М	>10 - 15%	100-500	Well	Inclined	0.1 - 3%	16	29	G	-	680858	5659851	11
SRWC16112	Improved Pasture	2016 O.BLC	TILL(F)	DVGfitk	DVG1	11	220	L	>10 - 15%	50-100	Moderately Well	Inclined	0.1 - 3%	47	21	F	-	681059	5659820	11
SRWC16113		2016 O.BLC	TILL(MF)	DVG	DVG1	8	213	М	>5 - 10%	100-500	Well	Inclined	<0.01%	20	36	G	-	681252	5659698	11
SRWC16114	Improved Pasture	2016 O.BLC	TILL(F)	DVGfitk	DVG1	4	50	М	>2.0 - 5.0%	50-100	Well	Ridged	<0.01%	34	26	G	-	681015	5659258	11
SRWC16115	Improved Pasture	2016 O.HG	FLUV(MF)	ZGW	POT7	2	5	L	0.5 - 2.0%	50-100	Poor	Inclined	3 - 15%	20	30	F	-	680976	5659160	11
SRWC16116	Improved Pasture	2016 GL.BLC	GLLC(F)	FSHgl	DVFS2	1	-	E	0.5 - 2.0%	100-500	Imperfect	Level	<0.01%	27	32	F	-	681038	5659040	11
SRWC16117	Improved Pasture	2016 O.BLC	TILL(M)\GLLC(F)	DVGxc	DVFS1	3	192	М	>2.0 - 5.0%	50-100	Well	Inclined	<0.01%	26	28	F	-	681127	5658891	11
SRWC16118	Improved Pasture	2016 R.BLC	TILL(MF)	DVGzr	DVG1	39	89	Μ	>30 - 45%	25-50	Moderately Well	Steep	<0.01%	20	0	G	-	681233	5658930	11
SRWC16119	Improved Pasture	2016 CA.BLC	TILL(MF)	DVGcagr	TBR6	3	146	E	>2.0 - 5.0%	50-100	Moderately Well	Inclined	<0.01%	28	32	F	-	681369	5658930	11
SRWC16120	Improved Pasture	2016 O.BLC	GLLC(F)	FSH	DVFS2	3	45	М	>2.0 - 5.0%	100-500	Well	Inclined	<0.01%	30	18	G	-	681457	5659006	11
SRWC16121	Improved Pasture	2016 O.BLC	TILL(F)	DVGfigr	DVG1	12	215	М	>10 - 15%	25-50	Well	Inclined	<0.01%	17	22	F	-	681509	5659069	11
SRWC16122	Improved Pasture	2016 O.BLC	GLLC(F)	FSH	DVFS1	14	199	М	>10 - 15%	100-500	Well	Inclined	<0.01%	26	47	G	-	681523	5659181	11
SRWC16123	Improved Pasture	2016 O.BLC	TILL(F)	DVGfitk	DVG1	18	210	Μ	>15 - 30%	50-100	Moderately Well	Inclined	<0.01%	47	23	F	-	681461	5659327	11
SRWC16124	Improved Pasture	2016 O.BLC	TILL(F)	DVGfi	DVG1	13	200	L	>10 - 15%	50-100	Moderately Well	Inclined	<0.01%	28	32	G	-	681330	5659516	11
SRWC16125	Improved Pasture	2016 O.BLC	TILL(F)	DVGfi	DVG1	1	-	E	0.5 - 2.0%	50-100	Well	Level	<0.01%	33	22	G	-	681158	5659394	11
SRWC16126	Improved Pasture	2016 CA.BLC	TILL(F)	DVGcafi	DVG1	-	-	-	-	-	Moderately Well	-	-	32	10	F	-	681139	5659302	11
SRWC16127	Improved Pasture	2016 GL.BLC	TILL(F)	DVGglfi	DVG1	1	-	E	0.5 - 2.0%	50-100	Imperfect	Inclined	<0.01%	24	46	F	-	680995	5659485	11
SRWC16128	Improved Pasture	2016 O.BLC	TILL(F)	DVGfi	DVG1	6	194	E	>5 - 10%	100-500	Moderately Well	Inclined	<0.01%	27	22	G	-	680864	5659603	11

Attachment C Soils Data Attachment March 2018

Table C-16 Soil Site

KEY							
Soil Classific	cation	Parent N	laterial	Soil Se	eries	Soil	Series Modifiers
CA.BLC	Calcareous Black Chernozem	ANTH	Anthropogenic	CRW	Caraway	са	calcareous - soil with primary alkaline earth
CU.HR	Cumulic Humic Regosol	FLUV	Fluvial	DRW	Drywood	со	coarse - greater than 10% coarse fragments
CU.R	Cumulic Regosol	GLFL	Glaciofluvial	DVG	Dunvargan	er	eroded - B horizon has been cultivated
GL.BLC	Gleyed Black Chernozem	GLLC	Glaciolacustrine	FSH	Fish Creek	fi	fine - one textural group finer than modal
GL.HR	Gleyed Humic Regosol	LACU	Lacustrine	MTB	Mesa Butte	gl	gleyed - poor drainage and periodic reduct
GL.R	Gleyed Regosol	ORG	Organic	POT	Pothole Creek	gr	gravelly - 20-50% coarse fragments (>2 mm -
GLCA.BLC	Gleyed Calcareous Black Chernozem	TILL	Morainal	SRC	Sarcee	pt	peaty - an organic horizon (>17% organic ca
GLCU.HR	Gleyed Cumulic Humic Regosol			TBR	Twin Bridges	sa	saline
GLCU.R	Gleyed Cumulic Regosol	Parent N	laterial Texture	ZCO	Miscellaneous Coarse Soil Unit	st	stony (20-50% coarse fragments (>25 cm dia
GLR.BLC	Gleyed Regosolic Black Chernozem	С	coarse (LS, LfS)	ZDL	Disturbed Soil Unit	tk	thick A horizon
O.BLC	Orthic black Chernozem	F	fine (SC, SiC, C)	ZGW	Undifferentiated Gleysolic Soil Unit	XC	clay at 30-99 cm
O.HG	Orthic Humic Gleysol	Μ	medium (vfSL, L, SiL)	ZOR	Undifferentiated Organic Soil Unit	xg	gravel at 30-99 cm
O.HR	Orthic Humic Regosol	MC	moderately coarse (SL, fSL)			XS	sand at 30-99 cm
O.R	Orthic Regosol	MF	moderately fine (SCL, CL, SiCL, Si)			xt	till at 30-99 cm
R.BLC	Regosolic Black Chernozem	VC	very coarse (S)			ус	clay at 100-200 cm
R.HG	Regosolic Humic Gleysol	VF	very fine (HC)	Slope	Position Code	zr	regosolic
T.H	Terric Humisol			С	crest	ZZ	atypical subgroup
T.M	Terric Mesisol	TS/SS Co	ontrast	D	depression		
		F	fair	Е	level		
		G	good	L	lower slope		
		Р	poor	М	mid slope		
				Т	toe		
				U	upper slope		

earth carbonates in the B horizon ments or one textural group coarser than modal

eduction

mm - 7.5 cm) by volume

nic carbon) which is >10 cm thick

cm diameter) by volume

Attachment C Soils Data Attachment March 2018

C.4 LAB SUMMARY TABLE

Table C-17 Lab Summary

						5	Soluble Paramete	ers				Soil Properties	Inorganics		Physical Prop	perties	
Sample ID	Sampling Date (DD/MM/YYYY)	Maxxam ID	Soluble Conductivity	Soluble (CaCl ₂) pH	Sodium Adsorption Ratio	Soluble Calcium (Ca)	Soluble Magnesium (Mg)	Soluble Sodium (Na)	Soluble Potassium (K)	Saturation %	Theoretical Gypsum Requirement	Calcium Carbonate Equivalent	Total Organic Carbon	% sand by hydrometer	% silt by hydrometer	Clay Content	Texture
		UNITS	dS/m	рН	N/A	mg/L	mg/L	mg/L	mg/L	%	tonnes/ha	%	%	%	%	%	N/A
		RDL	0.020	-	0.10	1.5	1.0	2.5	1.3	-	0.20	0.60	0.050	2.0	2.0	2.0	-
SRBL16003-AHK	9/22/2016	PT6986	0.82	7.47	0.27	110	45	13	8.5	110	<0.20	24	9.8	29	55	16	SILT LOAM
SRBL16003-AHK Lab- Dup	9/22/2016	PT6986	-	-	-	-	-	-	-	-	-	23	9.5	-	-	-	-
SRBL16003-CK	9/22/2016	PT6987	0.43	7.62	0.58	98	14	23	3.9	55	<0.20	34	-	24	51	25	SILT LOAM
SRBL16003-CK Lab- Dup	9/22/2016	PT6987	0.43	N/A	N/A	93	13	24	3.6	54	-	-	-	23	51	25	-
SRBL16003-CKGJ	9/22/2016	PT6988	0.42	7.64	0.77	62	11	25	<1.3	42	<0.20	36	-	23	57	20	SILT LOAM
SRBL16019-AP	9/24/2016	PT6989	0.26	7.07	0.32	39	11	8.7	2.2	67	<0.20	1.9	7.2	24	38	38	CLAY LOAM
SRBL16019-BM	9/24/2016	PT6990	0.25	6.57	0.49	32	10	12	4.9	55	<0.20	0.76	-	12	29	60	CLAY
SRBL16019-CK	9/24/2016	PT6991	0.30	7.72	0.51	61	12	16	4.9	77	<0.20	30	-	<2.0	20	79	HEAVY CLAY
SRBL16019-CK Lab- Dup	9/24/2016	PT6991	-	7.66	-	-	-	-	-	-	-	-	-	-	-	-	-
SRKF16002-AP	7/13/2016	PT6992	0.28	5.97	0.75	18	20	19	6.7	130	<0.20	1.7	10	23	41	36	CLAY LOAM
SRKF16002-BGJ	7/13/2016	PT6993	0.43	7.75	1.5	25	30	48	5.4	67	<0.20	4.0	-	4.0	17	79	HEAVY CLAY
SRKF16002-CKGJ	7/13/2016	PT6994	0.77	8.00	6.7	15	10	140	2.6	77	0.37	21	-	<2.0	17	83	HEAVY CLAY
SRKF16013-AP	7/14/2016	PT6995	0.49	7.05	1.7	35	19	51	31	100	<0.20	1.8	7.6	49	31	20	LOAM
SRKF16013-CK	7/14/2016	PT7071	0.70	7.79	2.6	49	18	83	6.4	60	<0.20	23	-	12	29	59	CLAY
SRKF16080-AP	7/19/2016	PT7072	0.48	6.59	0.39	25	21	11	89	83	<0.20	1.4	6.6	34	34	32	CLAY LOAM
SRKF16080-BMK	7/19/2016	PT7073	0.69	7.93	1.4	42	40	52	7.6	65	<0.20	23	-	3.9	24	72	HEAVY CLAY
SRKF16080-CK	7/19/2016	PT7074	1.3	8.11	3.9	44	60	170	7.4	66	<0.20	23	-	7.2	22	71	HEAVY CLAY
SRKF16097-AH	7/20/2016	PT7075	0.47	7.04	0.17	77	9.6	5.9	7.2	77	<0.20	4.0	3.5	69	25	5.4	SANDY LOAM

Attachment C Soils Data Attachment March 2018

Table C-17 Lab Summary

						S	Soluble Paramete	ers				Soil Properties	Inorganics		Physical Prop	erties	
Sample ID	Sampling Date (DD/MM/YYYY)	Maxxam ID	Soluble Conductivity	Soluble (CaCl ₂) pH	Sodium Adsorption Ratio	Soluble Calcium (Ca)	Soluble Magnesium (Mg)	Soluble Sodium (Na)	Soluble Potassium (K)	Saturation %	Theoretical Gypsum Requirement	Calcium Carbonate Equivalent	Total Organic Carbon	% sand by hydrometer	% silt by hydrometer	Clay Content	Texture
SRKF16097-CK	7/20/2016	PT7076	0.50	7.29	0.14	86	9.9	5.2	8.1	69	<0.20	14	-	67	26	6.9	Sandy Loam
SRKF16098-AHKGJ	7/20/2016	PT7077	1.1	7.27	0.64	190	22	35	<1.3	180	<0.20	22	16	38	46	16	LOAM
SRKF16098-CSKG	7/20/2016	PT7078	2.5	7.52	0.15	560	88	15	1.5	53	<0.20	29	-	41	41	18	loam
SRKF16098-LFH	7/20/2016	PT7079	1.2	7.48	0.28	220	29	17	18	180	<0.20	-	14	-	-	-	-
SRKF16107-CKG	7/21/2016	PT7080	1.3	7.30	0.55	250	27	35	<1.3	73	<0.20	34	-	17	58	26	SILT LOAM
SRKF16107-OM	7/21/2016	PT7132	0.71	6.90	0.37	85	27	15	24	94	<0.20	-	7.5	-	-	-	-
SRKF16118-APKS	7/21/2016	PT7133	2.7	6.28	0.20	570	73	19	11	260	<0.20	25	17	19	61	20	SILT LOAM
SRKF16118-BG	7/21/2016	PT7134	0.35	6.78	0.45	42	15	13	11	70	<0.20	1.0	-	7.6	19	73	HEAVY CLAY
SRKF16118-BGK Lab- Dup	-	PT7134	-	-	-	-	-	-	-	-	-	1.1	-	-	-	-	-
SRKF16118-CKG	7/21/2016	PT7135	0.27	7.48	0.55	38	8.9	15	9.4	69	<0.20	16	-	5.6	21	74	HEAVY CLAY
SRKF16140-AHK	9/24/2016	QE1984	0.68	7.34	0.14	130	18	6.4	8.6	69	<0.20	-	4.6	25	60	15	SILT LOAM
SRKF16140-AHK Lab- Dup	9/24/2016	QE1984	N/A	7.36	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-	-	26	59	15	N/A
SRKF16140-CK1	9/24/2016	QE1986	0.45	7.54	0.17	94	13	6.8	4.3	55	<0.20	28	-	25	65	9.7	SILT LOAM
SRKF16140-AHKB	9/24/2016	QE1985	0.57	7.44	0.18	120	15	8.0	5.3	62	<0.20	-	4.3	22	66	12	SILT LOAM
SRKF16140-CK2	9/24/2016	QE1987	0.37	7.79	0.21	67	8.2	6.9	3.2	40	<0.20	36	-	69	26	5.5	Sandy Loam
SRWC16007-CK1	7/12/2016	PT7136	0.73	7.47	<0.10	140	19	3.9	8.1	47	<0.20	29	-	45	50	5.6	SANDY LOAM
SRWC16007-CK1 Lab- Dup	7/12/2016	PT7136	0.71	N/A	N/A	130	19	5.5	8.2	46	-	-	-	43	51	5.8	-
SRWC16007-CK2	7/12/2016	PT7137	0.73	7.58	0.15	110	26	6.5	4.9	50	<0.20	38	-	78	19	2.9	LOAMY SAND
SRWC16007-CK2 Lab- Dup	7/12/2016	PT7137	-	7.49	-	-	-	-	-	-	-	-	-	-	-	-	-
SRWC16007-LFH	7/12/2016	PT7138	0.93	7.22	<0.10	160	29	4.4	12	150	<0.20	-	16	-	-	-	-
SRWC16013-AHK	7/14/2016	PT7139	1.9	7.19	0.46	260	78	33	19	140	<0.20	53	11	39	41	21	LOAM
SRWC16013-CGK	7/14/2016	PT7140	0.91	7.54	0.66	110	27	29	13	67	<0.20	22	-	19	22	59	CLAY
SRWC16020-AP	7/14/2016	PT7141	0.33	7.24	0.32	51	11	9.5	6.5	110	<0.20	4.2	7.3	39	41	19	LOAM

Attachment C Soils Data Attachment March 2018

Table C-17 Lab Summary

						S	oluble Paramete	ers				Soil Properties	Inorganics		Physical Prop	erties	
Sample ID	Sampling Date (DD/MM/YYYY)	Maxxam ID	Soluble Conductivity	Soluble (CaCl ₂) pH	Sodium Adsorption Ratio	Soluble Calcium (Ca)	Soluble Magnesium (Mg)	Soluble Sodium (Na)	Soluble Potassium (K)	Saturation %	Theoretical Gypsum Requirement	Calcium Carbonate Equivalent	Total Organic Carbon	% sand by hydrometer	% silt by hydrometer	Clay Content	Texture
SRWC16020-CK	7/14/2016	PT7180	2.2	7.88	1.8	210	130	140	3.4	65	<0.20	33	-	4.3	35	61	HEAVY CLAY
SRWC16022-AP	7/14/2016	PT7181	0.28	5.68	0.33	31	13	8.7	14	99	<0.20	1.2	5.8	20	48	33	SLTY CL LO
SRWC16022-BM	7/14/2016	PT7182	0.27	7.23	0.88	27	15	23	5.0	62	<0.20	3.5	-	10	27	62	HEAVY CLAY
SRWC16022-CK	7/14/2016	PT7183	1.2	7.82	2.4	73	54	110	4.1	78	<0.20	29	-	<2.0	27	72	HEAVY CLAY
SRWC16026-AP	7/15/2016	PT7184	0.12	5.64	0.62	13	2.3	9.3	<1.3	73	<0.20	0.70	3.7	28	42	30	CLAY LOAM
SRWC16026-BMGJ	7/15/2016	PT7185	0.77	6.09	0.75	55	45	31	5.6	59	<0.20	0.91	-	5.7	26	68	HEAVY CLAY
SRWC16026-CK	7/15/2016	PT7186	1.5	7.78	0.97	150	100	62	5.0	76	<0.20	18	-	4.9	14	81	HEAVY CLAY
SRWC16033-AP	7/16/2016	PT7187	0.38	5.78	0.43	30	9.9	11	14	85	<0.20	1.6	12	47	37	17	LOAM
SRWC16033-BM	7/16/2016	PT7188	0.30	5.99	0.49	29	10	12	3.8	56	<0.20	0.82	-	14	30	56	CLAY
SRWC16033-CK	7/16/2016	PT7189	0.32	7.75	0.42	66	14	14	4.0	66	<0.20	32	-	4.6	29	67	HEAVY CLAY
SRWC16080-APK	7/19/2016	PT7220	0.99	7.22	0.45	120	17	20	92	99	<0.20	3.0	7.2	39	30	31	CLAY LOAM
SRWC16080-BMK	7/19/2016	PT7221	0.43	7.24	0.45	69	14	16	15	72	<0.20	4.0	-	10	30	60	HEAVY CLAY
SRWC16080-CK	7/19/2016	PT7222	0.37	7.58	0.26	78	11	9.3	6.3	74	<0.20	26	-	3.7	19	77	HEAVY CLAY
SRWC16097-AP	7/20/2016	PT7223	0.53	6.86	0.52	64	22	19	17	91	<0.20	1.4	6.5	19	33	48	CLAY
SRWC16097-AP Lab- Dup	-	PT7223	-	-	-	-	-	-	-	-	-	1.4	-	-	-	-	-
SRWC16097-BGK	7/20/2016	PT7224	0.32	7.58	0.54	52	13	17	7.1	66	<0.20	18	-	3.7	22	74	HEAVY CLAY
SRWC16097-CK	7/20/2016	PT7225	0.36	7.81	0.81	34	14	22	4.7	74	<0.20	18	-	8.7	20	71	HEAVY CLAY

Attachment C Soils Data Attachment March 2018

Attachment C Soils Data Attachment March 2018

C.5 MAXXAM ANALYTICS COC DOCUMENTS

Your Project #: 110773396.301.600.208.5 Site#: 110773396-SR1 Site Location: WEST OF CALGARY

Attention:BRET LEOPPKY

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/28 Report #: R2291185 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

MAXXAM JOB #: B690828 Received: 2016/10/14, 12:46

Sample Matrix: Soil # Samples Received: 46

Max

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Calcium Carbonate Equivalent (1)	43	N/A	2016/10/21	AB SOP-00019	Carter 2nd ed 20.2 m
Conductivity @25C (Soluble) (1)	2	2016/10/18	2016/10/18	AB SOP-00033 / AB SOP-	SM 22 2510 B m
				00004	
Conductivity @25C (Soluble) (1)	44	2016/10/20	2016/10/20	AB SOP-00033 / AB SOP- 00004	SM 22 2510 B m
pH @25C (1:2 Calcium Chloride Extract) (1)	46	2016/10/19	2016/10/19	AB SOP-00033 / AB SOP- 00006	SM 22 4500 H+B m
Sodium Adsorption Ratio (1)	2	N/A	2016/10/19	AB WI-00065	Auto Calc
Sodium Adsorption Ratio (1)	20	N/A	2016/10/20	AB WI-00065	Auto Calc
Sodium Adsorption Ratio (1)	24	N/A	2016/10/21	AB WI-00065	Auto Calc
Soluble Ions (1)	2	2016/10/18	2016/10/19	AB SOP-00033 / AB SOP- 00042	EPA 200.7 CFR 2012 m
Soluble Ions (1)	20	2016/10/19	2016/10/20	AB SOP-00033 / AB SOP- 00042	EPA 200.7 CFR 2012 m
Soluble Ions (1)	24	2016/10/20	2016/10/20	AB SOP-00033 / AB SOP- 00042	EPA 200.7 CFR 2012 m
Soluble Paste (1)	2	2016/10/18	2016/10/18	AB SOP-00033	Carter 2nd ed 15.2m
Soluble Paste (1)	40	2016/10/19	2016/10/20	AB SOP-00033	Carter 2nd ed 15.2m
Soluble Paste (1)	4	2016/10/20	2016/10/20	AB SOP-00033	Carter 2nd ed 15.2m
Texture by Hydrometer (1)	23	N/A	2016/10/19	AB SOP-00030	Carter 2nd ed 55.3 m
Texture by Hydrometer (1)	20	N/A	2016/10/20	AB SOP-00030	Carter 2nd ed 55.3 m
Texture Class (1)	3	N/A	2016/10/19	AB SOP-00030	Auto Calc
Texture Class (1)	20	N/A	2016/10/20	AB SOP-00030	Auto Calc
Texture Class (1)	20	N/A	2016/10/21	AB SOP-00030	Auto Calc
Theoretical Gypsum Requirement (1, 2)	2	N/A	2016/10/19	AB WI-00065	Auto Calc
Theoretical Gypsum Requirement (1, 2)	20	N/A	2016/10/20	AB WI-00065	Auto Calc
Theoretical Gypsum Requirement (1, 2)	24	N/A	2016/10/21	AB WI-00065	Auto Calc

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Maxxam Edmonton Environmental

(2) TGR calculation is based on a theoretical SAR of 4. Salt Contamination and Assessment and remediation guideline 2001 recommended SAR is ranging 4-8. TGR is reported in tonnes/ha.

Maxia Manager A Bureau Veritas Group Company

Your Project #: 110773396.301.600.208.5 Site#: 110773396-SR1 Site Location: WEST OF CALGARY

Attention:BRET LEOPPKY

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/28 Report #: R2291185 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

MAXXAM JOB #: B690828 Received: 2016/10/14, 12:46

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Wendy Sears, Project manager

Email: WSears@maxxam.ca

Phone# (403)735-2277

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

⁻⁻⁻⁻⁻⁻

SOIL SALINITY 3 (SOIL)

Maxxam ID		PT6986		PT6987	PT6987		
Sampling Date		2016/09/22		2016/09/22	2016/09/22		
	UNITS	SRBL16003-AHK	QC Batch	SRBL16003-CK	SRBL16003-CK Lab-Dup	RDL	QC Batch
Soluble Parameters							
Soluble Conductivity	dS/m	0.82	8439579	0.43	0.43	0.020	8439579
Soluble (CaCl2) pH	рН	7.47	8438127	7.62	N/A	N/A	8438104
Sodium Adsorption Ratio	N/A	0.27	8433949	0.58	N/A	0.10	8433949
Soluble Calcium (Ca)	mg/L	110	8440389	98	93	1.5	8440389
Soluble Magnesium (Mg)	mg/L	45	8440389	14	13	1.0	8440389
Soluble Sodium (Na)	mg/L	13	8440389	23	24	2.5	8440389
Soluble Potassium (K)	mg/L	8.5	8440389	3.9	3.6	1.3	8440389
Saturation %	%	110	8438966	55	54	N/A	8438966
Theoretical Gypsum Requirement	tonnes/ha	<0.20	8434088	<0.20	N/A	0.20	8434088

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

2016/09/22 3L16003-CKGJ 0.42 7.64 0.77	2016/09/24 SRBL16019-AP 0.26 7.07 0.32	QC Batch 8440628 8438127 8433949	2016/09/24 SRBL16019-BM 0.25 6.57	2016/09/24 SRBL16019-CK 0.30 7.72	RDL 0.020 N/A	QC Batch 8439579 8438127
0.42 7.64	0.26	8440628 8438127	0.25 6.57	0.30 7.72	0.020	
7.64	7.07	8438127	6.57	7.72		
7.64	7.07	8438127	6.57	7.72		
-	-		-		N/A	8438127
0.77	0.32	8133010	0.40			
		0433343	0.49	0.51	0.10	8433949
62	39	8441210	32	61	1.5	8440389
11	11	8441210	10	12	1.0	8440389
25	8.7	8441210	12	16	2.5	8440389
<1.3	2.2	8441210	4.9	4.9	1.3	8440389
42	67	8440065	55	77	N/A	8438966
<0.20	<0.20	8434088	<0.20	<0.20	0.20	8434088
	<1.3 42	<1.3 2.2 42 67	<1.3 2.2 8441210 42 67 8440065	<1.3 2.2 8441210 4.9 42 67 8440065 55	<1.3 2.2 8441210 4.9 4.9 42 67 8440065 55 77	25 8.7 8441210 12 16 2.5 <1.3

N/A = Not Applicable

SOIL SALINITY 3 (SOIL)

Maxxam ID		PT6991	PT6992		PT6993		
Sampling Date		2016/09/24	2016/07/13		2016/07/13		
	UNITS	SRBL16019-CK Lab-Dup	SRKF16002-AP	QC Batch	SRKF16002-BGJ	RDL	QC Batch
Soluble Parameters							
Soluble Conductivity	dS/m	N/A	0.28	8439579	0.43	0.020	8440628
Soluble (CaCl2) pH	рН	7.66	5.97	8438127	7.75	N/A	8438127
Sodium Adsorption Ratio	N/A	N/A	0.75	8433949	1.5	0.10	8433949
Soluble Calcium (Ca)	mg/L	N/A	18	8440389	25	1.5	8441210
Soluble Magnesium (Mg)	mg/L	N/A	20	8440389	30	1.0	8441210
Soluble Sodium (Na)	mg/L	N/A	19	8440389	48	2.5	8441210
Soluble Potassium (K)	mg/L	N/A	6.7	8440389	5.4	1.3	8441210
Saturation %	%	N/A	130	8438966	67	N/A	8440065
Theoretical Gypsum Requirement	tonnes/ha	N/A	<0.20	8434088	<0.20	0.20	8434088

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		PT6994		PT6995		PT7071	PT7072		
Sampling Date		2016/07/13		2016/07/14		2016/07/14	2016/07/19		
	UNITS	SRKF16002-CKGJ	QC Batch	SRKF16013-AP	QC Batch	SRKF16013-CK	SRKF16080-AP	RDL	QC Batch
Soluble Parameters									
Soluble Conductivity	dS/m	0.77	8439579	0.49	8439579	0.70	0.48	0.020	8439579
Soluble (CaCl2) pH	рН	8.00	8438104	7.05	8438127	7.79	6.59	N/A	8438104
Sodium Adsorption Ratio	N/A	6.7	8433949	1.7	8433949	2.6	0.39	0.10	8433949
Soluble Calcium (Ca)	mg/L	15	8440389	35	8440389	49	25	1.5	8440389
Soluble Magnesium (Mg)	mg/L	10	8440389	19	8440389	18	21	1.0	8440389
Soluble Sodium (Na)	mg/L	140	8440389	51	8440389	83	11	2.5	8440389
Soluble Potassium (K)	mg/L	2.6	8440389	31	8440389	6.4	89	1.3	8440389
Saturation %	%	77	8438966	100	8438966	60	83	N/A	8438966
Theoretical Gypsum Requirement	tonnes/ha	0.37	8434088	<0.20	8434088	<0.20	<0.20	0.20	8434088
RDL = Reportable Detection Limit	<u> </u>	1	1	1	1	1	1	1	1

N/A = Not Applicable

ņ

2

1

1

1

SOIL SALINITY 3 (SOIL)

Maxxam ID		PT7073		PT7074		PT7075	PT7076		
Sampling Date		2016/07/19		2016/07/19		2016/07/20	2016/07/20		
	UNITS	SRKF16080-BMK	QC Batch	SRKF16080-CK	QC Batch	SRKF16097-AH	SRKF16097-CK	RDL	QC Batch
Soluble Parameters									
Soluble Conductivity	dS/m	0.69	8439579	1.3	8439579	0.47	0.50	0.020	8439579
Soluble (CaCl2) pH	рН	7.93	8438127	8.11	8438104	7.04	7.29	N/A	8438127
Sodium Adsorption Ratio	N/A	1.4	8433949	3.9	8433949	0.17	0.14	0.10	8433949
Soluble Calcium (Ca)	mg/L	42	8440389	44	8440389	77	86	1.5	8440389
Soluble Magnesium (Mg)	mg/L	40	8440389	60	8440389	9.6	9.9	1.0	8440389
Soluble Sodium (Na)	mg/L	52	8440389	170	8440389	5.9	5.2	2.5	8440389
Soluble Potassium (K)	mg/L	7.6	8440389	7.4	8440389	7.2	8.1	1.3	8440389
Saturation %	%	65	8438966	66	8438966	77	69	N/A	8438966
Theoretical Gypsum Requirement	tonnes/ha	<0.20	8434088	<0.20	8434088	<0.20	<0.20	0.20	8434088
RDL = Reportable Detection Limit	-	•			•	•		•	

N/A = Not Applicable

Maxxam ID		PT7077		PT7078		PT7079		
Sampling Date		2016/07/20		2016/07/20		2016/07/20		
	UNITS	SRKF16098-AHKGJ	QC Batch	SRKF16098-CKG	QC Batch	SRKF16098-LFH	RDL	QC Batch
Soluble Parameters								
Soluble Conductivity	dS/m	1.1	8440628	2.5	8439504	1.2	0.020	8439579
Soluble (CaCl2) pH	рН	7.27	8438104	7.52	8438104	7.48	N/A	8438114
Sodium Adsorption Ratio	N/A	0.64	8433949	0.15	8433949	0.28	0.10	8433949
Soluble Calcium (Ca)	mg/L	190	8441210	560	8440591	220	1.5	8440389
Soluble Magnesium (Mg)	mg/L	22	8441210	88	8440591	29	1.0	8440389
Soluble Sodium (Na)	mg/L	35	8441210	15	8440591	17	2.5	8440389
Soluble Potassium (K)	mg/L	<1.3	8441210	1.5	8440591	18	1.3	8440389
Saturation %	%	180	8440065	53	8438899	180	N/A	8438966
Theoretical Gypsum Requirement	tonnes/ha	<0.20	8434089	<0.20	8434089	<0.20	0.20	8434089
RDL = Reportable Detection Limit								
N/A = Not Applicable								

ğ

1

2

SOIL SALINITY 3 (SOIL)

	PT7080		PT7132		PT7133		
	2016/07/21		2016/07/21		2016/07/21		
UNITS	SRKF16107-CKG	QC Batch	SRKF16107-OM	QC Batch	SRKF16118-APK	RDL	QC Batch
dS/m	1.3	8439504	0.71	8439579	2.7	0.020	8439579
рН	7.30	8438114	6.90	8438106	6.28	N/A	8438114
N/A	0.55	8433949	0.37	8433949	0.20	0.10	8433949
mg/L	250	8440591	85	8440389	570	1.5	8440389
mg/L	27	8440591	27	8440389	73	1.0	8440389
mg/L	35	8440591	15	8440389	19	2.5	8440389
mg/L	<1.3	8440591	24	8440389	11	1.3	8440389
%	73	8438899	94	8438966	260	N/A	8438966
tonnes/ha	<0.20	8434089	<0.20	8434089	<0.20	0.20	8434089
	dS/m pH N/A mg/L mg/L mg/L mg/L %	2016/07/21 UNITS SRKF16107-CKG dS/m 1.3 pH 7.30 N/A 0.55 mg/L 250 mg/L 27 mg/L 35 mg/L <1.3	2016/07/21 UNITS SRKF16107-CKG QC Batch dS/m 1.3 8439504 pH 7.30 8438114 N/A 0.55 8433949 mg/L 250 8440591 mg/L 27 8440591 mg/L 35 8440591 mg/L 35 8440591 mg/L 73 8438899	2016/07/21 2016/07/21 UNITS SRKF16107-CKG QC Batch SRKF16107-OM dS/m 1.3 8439504 0.71 pH 7.30 8438114 6.90 N/A 0.55 8433949 0.37 mg/L 250 8440591 85 mg/L 27 8440591 15 mg/L 35 8440591 24 % 73 8438899 94	2016/07/21 2016/07/21 UNITS SRKF16107-CKG QC Batch SRKF16107-OM QC Batch dS/m 1.3 8439504 0.71 8439579 pH 7.30 8438114 6.90 8438106 N/A 0.55 8433949 0.37 8433949 mg/L 250 8440591 85 8440389 mg/L 27 8440591 27 8440389 mg/L 35 8440591 15 8440389 mg/L <1.3	2016/07/21 2016/07/21 2016/07/21 UNITS SRKF16107-CKG QC Batch SRKF16107-OM QC Batch SRKF16107-OM dS/m 1.3 8439504 0.71 8439579 2.7 pH 7.30 8438114 6.90 8438106 6.28 N/A 0.55 8433949 0.37 8433949 0.20 mg/L 250 8440591 27 8440389 570 mg/L 35 8440591 15 8440389 19 mg/L <1.3 843899 94 843896 260	2016/07/21 2016/07/21 2016/07/21 2016/07/21 2016/07/21 UNITS SRKF16107-CKG QC Batch SRKF16107-OM QC Batch SRKF16118-APK RDL dS/m 1.3 8439504 0.71 8439579 2.7 0.020 pH 7.30 8438114 6.90 8438106 6.28 N/A N/A 0.55 8433949 0.37 8433949 0.200 0.10 mg/L 250 8440591 85 8440389 570 1.5 mg/L 27 8440591 15 8440389 19 2.5 mg/L 35 8440591 24 8440389 11 1.3 % 73 843889 94 843896 260 N/A

N/A = Not Applicable

Maxxam ID		PT7134		PT7135	PT7136	PT7136		
Sampling Date		2016/07/21		2016/07/21	2016/07/12	2016/07/12		
	UNITS	SRKF16118-BGK	QC Batch	SRKF16118-CKG	SRWC16007-CK1	SRWC16007-CK1 Lab-Dup	RDL	QC Batch
Soluble Parameters			·	-		-		
Soluble Conductivity	dS/m	0.35	8439504	0.27	0.73	0.71	0.020	8439504
Soluble (CaCl2) pH	рН	6.78	8438106	7.48	7.47	N/A	N/A	8438104
Sodium Adsorption Ratio	N/A	0.45	8433949	0.55	<0.10	N/A	0.10	8433949
Soluble Calcium (Ca)	mg/L	42	8440591	38	140	130	1.5	8440591
Soluble Magnesium (Mg)	mg/L	15	8440591	8.9	19	19	1.0	8440591
Soluble Sodium (Na)	mg/L	13	8440591	15	3.9	5.5	2.5	8440591
Soluble Potassium (K)	mg/L	11	8440591	9.4	8.1	8.2	1.3	8440591
Saturation %	%	70	8438899	69	47	46	N/A	8438899
Theoretical Gypsum Requirement	tonnes/ha	<0.20	8434089	<0.20	<0.20	N/A	0.20	8434089

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

SOIL SALINITY 3 (SOIL)

Maxxam ID		PT7137		PT7137		PT7138		
Sampling Date		2016/07/12		2016/07/12		2016/07/12		
	UNITS	SRWC16007-CK2	RDL	SRWC16007-CK2 Lab-Dup	QC Batch	SRWC16007-LFH	RDL	QC Batch
Soluble Parameters								
Soluble Conductivity	dS/m	0.73	0.020	N/A	8439504	0.93	0.020	8439579
Soluble (CaCl2) pH	рН	7.58	N/A	7.49	8438104	7.22	N/A	8438114
Sodium Adsorption Ratio	N/A	0.15	0.10	N/A	8433949	<0.10	0.10	8434085
Soluble Calcium (Ca)	mg/L	110	1.5	N/A	8440591	160	1.5	8440389
Soluble Magnesium (Mg)	mg/L	26	1.0	N/A	8440591	29	1.0	8440389
Soluble Sodium (Na)	mg/L	6.5	2.5	N/A	8440591	4.4	2.5	8440389
Soluble Potassium (K)	mg/L	4.9	1.3	N/A	8440591	12	1.3	8440389
Saturation %	%	50	N/A	N/A	8438899	150	N/A	8438966
Theoretical Gypsum Requirement	tonnes/ha	<0.20	0.20	N/A	8434089	<0.20	0.20	8434089
RDL = Reportable Detection Limit	•	•	•				•	
Lab-Dup = Laboratory Initiated Dup	licate							

N/A = Not Applicable

Maxxam ID		PT7139		PT7140		PT7141		
Sampling Date		2016/07/14		2016/07/14		2016/07/14		
	UNITS	SRWC16013-AHK	QC Batch	SRWC16013-CGK	QC Batch	SRWC16020-AP	RDL	QC Batch
Soluble Parameters								
Soluble Conductivity	dS/m	1.9	8439579	0.91	8439504	0.33	0.020	8439504
Soluble (CaCl2) pH	рН	7.19	8438114	7.54	8438114	7.24	N/A	8438106
Sodium Adsorption Ratio	N/A	0.46	8434085	0.66	8434085	0.32	0.10	8434085
Soluble Calcium (Ca)	mg/L	260	8440389	110	8440591	51	1.5	8440591
Soluble Magnesium (Mg)	mg/L	78	8440389	27	8440591	11	1.0	8440591
Soluble Sodium (Na)	mg/L	33	8440389	29	8440591	9.5	2.5	8440591
Soluble Potassium (K)	mg/L	19	8440389	13	8440591	6.5	1.3	8440591
Saturation %	%	140	8438966	67	8438899	110	N/A	8438899
Theoretical Gypsum Requirement	tonnes/ha	<0.20	8434089	<0.20	8434089	<0.20	0.20	8434089
RDL = Reportable Detection Limit								
N/A = Not Applicable								

Report I

SOIL SALINITY 3 (SOIL)

Maxxam ID		PT7180		PT7181		PT7182		
Sampling Date		2016/07/14		2016/07/14		2016/07/14		
	UNITS	SRWC16020-CK	QC Batch	SRWC16022-AP	QC Batch	SRWC16022-BM	RDL	QC Batch
Soluble Parameters								
Soluble Conductivity	dS/m	2.2	8439504	0.28	8439579	0.27	0.020	8439504
Soluble (CaCl2) pH	рН	7.88	8438129	5.68	8438114	7.23	N/A	8438114
Sodium Adsorption Ratio	N/A	1.8	8434085	0.33	8434085	0.88	0.10	8434085
Soluble Calcium (Ca)	mg/L	210	8440591	31	8440389	27	1.5	8440591
Soluble Magnesium (Mg)	mg/L	130	8440591	13	8440389	15	1.0	8440591
Soluble Sodium (Na)	mg/L	140	8440591	8.7	8440389	23	2.5	8440591
Soluble Potassium (K)	mg/L	3.4	8440591	14	8440389	5.0	1.3	8440591
Saturation %	%	65	8438899	99	8438966	62	N/A	8438899
Theoretical Gypsum Requirement	tonnes/ha	<0.20	8434089	<0.20	8434089	<0.20	0.20	8434089
RDL = Reportable Detection Limit	•		•				•	

N/A = Not Applicable

Maxxam ID		PT7183		PT7184		PT7185		
Sampling Date		2016/07/14		2016/07/15		2016/07/15		
	UNITS	SRWC16022-CK	QC Batch	SRWC16026-AP	QC Batch	SRWC16026-BMGJ	RDL	QC Batch
Soluble Parameters								
Soluble Conductivity	dS/m	1.2	8439579	0.12	8437331	0.77	0.020	8439504
Soluble (CaCl2) pH	рН	7.82	8438106	5.64	8438133	6.09	N/A	8438125
Sodium Adsorption Ratio	N/A	2.4	8434085	0.62	8434085	0.75	0.10	8434085
Soluble Calcium (Ca)	mg/L	73	8440389	13	8438508	55	1.5	8440591
Soluble Magnesium (Mg)	mg/L	54	8440389	2.3	8438508	45	1.0	8440591
Soluble Sodium (Na)	mg/L	110	8440389	9.3	8438508	31	2.5	8440591
Soluble Potassium (K)	mg/L	4.1	8440389	<1.3	8438508	5.6	1.3	8440591
Saturation %	%	78	8438966	73	8435732	59	N/A	8438899
Theoretical Gypsum Requirement	tonnes/ha	<0.20	8434089	<0.20	8434089	<0.20	0.20	8434089
RDL = Reportable Detection Limit								
N/A = Not Applicable								

SOIL SALINITY 3 (SOIL)

6/07/15 16026-CK 1.5 7.78 0.97 150	QC Batch 8439504 8438129 8434085		2016/07/16 SRWC16033-BM 0.30 5.99 0.49	2016/07/16 SRWC16033-CK 0.32 7.75 0.42	RDL 0.020 N/A 0.10	QC Batch 8439504 8438125 8434085
1.5 7.78 0.97	8439504 8438129 8434085	0.38	0.30	0.32	0.020 N/A	8438125
7.78 0.97	8438129 8434085	5.78	5.99	7.75	N/A	8438125
7.78 0.97	8438129 8434085	5.78	5.99	7.75	N/A	8438125
0.97	8434085			-		
		0.43	0.49	0.42	0.10	8434085
150	0440504					
	8440591	30	29	66	1.5	8440591
100	8440591	9.9	10	14	1.0	8440591
62	8440591	11	12	14	2.5	8440591
5.0	8440591	14	3.8	4.0	1.3	8440591
76	8438899	85	56	66	N/A	8438899
<0.20	8434089	<0.20	<0.20	<0.20	0.20	8434089
	62 5.0 76	6284405915.08440591768438899	62 8440591 11 5.0 8440591 14 76 8438899 85	62 8440591 11 12 5.0 8440591 14 3.8 76 8438899 85 56	62 8440591 11 12 14 5.0 8440591 14 3.8 4.0 76 8438899 85 56 66	62 8440591 11 12 14 2.5 5.0 8440591 14 3.8 4.0 1.3 76 8438899 85 56 66 N/A

N/A = Not Applicable

Maxxam ID		PT7220	PT7221	PT7222		PT7223		
Sampling Date		2016/07/19	2016/07/19	2016/07/19		2016/07/20		
	UNITS	SRWC16080-APK	SRWC16080-BMK	SRWC16080-CK	QC Batch	SRWC16097-AP	RDL	QC Batch
Soluble Parameters								
Soluble Conductivity	dS/m	0.99	0.43	0.37	8439504	0.53	0.020	8437331
Soluble (CaCl2) pH	рН	7.22	7.24	7.58	8438133	6.86	N/A	8438133
Sodium Adsorption Ratio	N/A	0.45	0.45	0.26	8434085	0.52	0.10	8434085
Soluble Calcium (Ca)	mg/L	120	69	78	8440591	64	1.5	8438508
Soluble Magnesium (Mg)	mg/L	17	14	11	8440591	22	1.0	8438508
Soluble Sodium (Na)	mg/L	20	16	9.3	8440591	19	2.5	8438508
Soluble Potassium (K)	mg/L	92	15	6.3	8440591	17	1.3	8438508
Saturation %	%	99	72	74	8438899	91	N/A	8435732
Theoretical Gypsum Requirement	tonnes/ha	<0.20	<0.20	<0.20	8434089	<0.20	0.20	8434089
RDL = Reportable Detection Limit	•							
N/A = Not Applicable								

SOIL SALINITY 3 (SOIL)

Maxxam ID		PT7224	PT7225		
Sampling Date		2016/07/20	2016/07/20		
	UNITS	SRWC16097-BG	SRWC16097-CK	RDL	QC Batch
Soluble Parameters					
Soluble Conductivity	dS/m	0.32	0.36	0.020	8439504
Soluble (CaCl2) pH	рН	7.58	7.81	N/A	8438125
Sodium Adsorption Ratio	N/A	0.54	0.81	0.10	8434085
Soluble Calcium (Ca)	mg/L	52	34	1.5	8440591
Soluble Magnesium (Mg)	mg/L	13	14	1.0	8440591
Soluble Sodium (Na)	mg/L	17	22	2.5	8440591
Soluble Potassium (K)	mg/L	7.1	4.7	1.3	8440591
Saturation %	%	66	74	N/A	8438899
Theoretical Gypsum Requirement	tonnes/ha	<0.20	<0.20	0.20	8434089
RDL = Reportable Detection Limit					
N/A = Not Applicable					

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		PT69	86	PT6	986	PT6987	PT6987		PT698	8		
Sampling Date		2016/0	9/22	2016/	/09/22	2016/09/22	2016/09/2	2	2016/09	/22		
	UNITS	SRBL1600)3-АНК		003-AHK ·Dup	SRBL16003-CK	SRBL16003- Lab-Dup	СК	SRBL16003	B-CKGJ	RDL	QC Batc
Soil Properties												
Calcium Carbonate Equivalent	%	24		2	3	34	N/A		36		0.60	844028
Physical Properties	·	-					•	•		÷		
% sand by hydrometer	%	29		N,	/A	24	23		23		2.0	844038
% silt by hydrometer	%	55		N,	/A	51	51		57		2.0	844038
Clay Content	%	16		N,	/A	25	25		20		2.0	844038
Texture	N/A	SILT LO	MAM	N,	/A	SILT LOAM	N/A		SILT LO	AM	N/A	843408
N/A = Not Applicable /axxam ID		PT6989	9	PT699	90	PT6991	PT6992		PT69	993		
ampling Date		2016/09/	/24	2016/09	9/24	2016/09/24	2016/07/1	.3	2016/0)7/13		
	UNITS	SRBL16019	9-AP	SRBL1601	L9-BM	SRBL16019-CK	SRKF16002-	AP	SRKF160	02-BGJ	RD	L QC Ba
oil Properties												
alcium Carbonate Equivalent	%	1.9		0.76	5	30	1.7		4.0	0	0.6	0 84402
hysical Properties												
6 sand by hydrometer	%	24		12		<2.0	23		4.(0	2.0	84403
6 silt by hydrometer	%	38		29		20	41		17	7	2.0	84403
lay Content	%	38		60		79	36		79	Ð	2.0	84403
exture	N/A	CLAY LOA	٩M	CLA	Y	HEAVY CLAY	CLAY LOAI	M	HEAVY	CLAY	N/#	A 84340
DL = Reportable Detection Lim I/A = Not Applicable	it											
Maxxam ID			PT69	994		PT6995		Р	T7071			
Sampling Date			2016/0	17/12		2016/07/14		201	6/07/14			

Maxxam ID		PT6994		PT6995		PT7071		
Sampling Date		2016/07/13		2016/07/14		2016/07/14		
	UNITS	SRKF16002-CKGJ	QC Batch	SRKF16013-AP	QC Batch	SRKF16013-CK	RDL	QC Batch
Soil Properties								
Calcium Carbonate Equivalent	%	21	8440286	1.8	8440286	23	0.60	8440286
Physical Properties								
% sand by hydrometer	%	<2.0	8440387	49	8438301	12	2.0	8440387
% silt by hydrometer	%	17	8440387	31	8438301	29	2.0	8440387
Clay Content	%	83	8440387	20	8438301	59	2.0	8440387
Texture	N/A	HEAVY CLAY	8434086	LOAM	8434086	CLAY	N/A	8434086
RDL = Reportable Detection Lin	nit					•	-	
N/A = Not Applicable								l

N/A = Not Applicable

RESULTS OF CHEMICAL ANALYSES OF SOIL

xxam ID			T7072			PT7073		PT7074		PT707			
npling Date		201	16/07/19		20	16/07/19	20	16/07/19		2016/07	/20		
	UNITS	SRKF	16080-AP	QC Ba	tch SRKF	16080-BM	K SRK	F16080-CK	QC Ba	tch SRKF1609	7-AH	RDL	QC B
l Properties													
cium Carbonate Equivalent	%		1.4	84402	286	23		23	84402	.86 4.0		0.60	8440
sical Properties													
and by hydrometer	%		34	84383	301	3.9		7.2	84403	87 69		2.0	8438
ilt by hydrometer	%		34	8438301		24		22	84403	87 25		2.0	8438
y Content	%		32	84383	301	72		71	84403	87 5.4		2.0	8438
ture	N/A	CL/	AY LOAM	84340	086 HE	AVY CLAY	HE	AVY CLAY	84340	86 SANDY LC	MAQ	N/A	8434
L = Reportable Detection Lim A = Not Applicable	hit												
Maxxam ID			PT707	5	PT	7077		PT7	078	PT7080			
Sampling Date			2016/07,	/20	2016	/07/20		2016/	07/20	2016/07/21			
	ι	JNITS	SRKF1609	7-CK	SRKF160	98-AHKGJ	QC Bate	h SRKF160	98-CKG	SRKF16107-CK	G RDI	QC E	Batch
Soil Properties										•			
Calcium Carbonate Equiva	lent	%	14			22	844028	6 2	9	34	0.60	844	0286
Physical Properties					I								
% sand by hydrometer		%	67		38		844038	7 4	1	17	2.0	843	9482
% silt by hydrometer		%	26			16	844038	7 4	1	58	2.0	843	9482
Clay Content		%	6.9		:	16	844038	7 1	8	26	2.0	843	9482
Texture		N/A	SANDY LC	MA	LC	AM	843408	34086 LOAM		SILT LOAM	SILT LOAM N/A		4086
RDL = Reportable Detection N/A = Not Applicable Maxxam ID	on Limit		PT713	3		PT71	34	PT713	4	PT7135			
Sampling Date			2016/07	/21		2016/0	7/21	2016/07	/21	2016/07/21			
		UNITS			QC Batch	SRKF161		SRKF16118 Lab-Du	-BGK	SRKF16118-CKG	RDL	QC Ba	itch
Soil Properties													
Calcium Carbonate Equiv	valent	%	25		8440286	1.0)	1.1		16	0.60	84402	296
Physical Properties													
% sand by hydrometer		%	19		8440387	7.6	5	N/A		5.6	2.0	84394	482
% silt by hydrometer		%	61		8440387	19		N/A		21	2.0	84394	482
Clay Content		%	20		8440387	73		N/A		74	2.0	84394	482
Texture		N/A	SILT LOA	M	8434086	HEAVY	CLAY	N/A		HEAVY CLAY	N/A	84340	086
RDL = Reportable Detect Lab-Dup = Laboratory Ini N/A = Not Applicable			e										

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID			PT7136		PT7136	PT7137			PT7139			
Sampling Date			2016/07/2	12	2016/07/12	2016/07/12			2016/07/14			
	U	NITS	SRWC16007	-СК1	SRWC16007-CK1 Lab-Dup	SRWC16007-C	<2 Q	C Batch	SRWC16013-AH	IK RD	l QC	Batch
Soil Properties												
Calcium Carbonate Equivale	ent	%	29		N/A	38	8	440296	53	0.6	0 844	0296
Physical Properties				I							-	
% sand by hydrometer		%	45		43	78	8	439482	39	2.0) 844	0387
% silt by hydrometer		%	50		51	19		439482	41	2.0) 844	0387
Clay Content		%	5.6		5.8	2.9	8	439482	21	2.0) 844	0387
Texture	Ν	I/A	SANDY LOA	٩M	N/A	LOAMY SAND) 8	434086	LOAM	N/	A 843	4086
Lab-Dup = Laboratory Initia N/A = Not Applicable Maxxam ID	ted Dup		PT714	40	PT7141	PT7180			PT7181			
Sampling Date			2016/07		2016/07/14	2016/07/14			2016/07/14			
		UNITS	SRWC1601		SRWC16020-AP	SRWC16020-C	k or	Batch	SRWC16022-AP	RDL	QC Ba	tch
Soil Properties											_	
Calcium Carbonate Equiv	alont	%	22		4.2	33	01	40296	1.2	0.60	84402	06
Physical Properties	alcint	70			4.2		04	40290	1.2	0.00	04402	90
% sand by hydrometer		%	19		39	4.3	8/	39482	20	2.0	84403	87
% silt by hydrometer		%	22		41	35			48	2.0	84403	
Clay Content		%	59		19	61		39482	33		84403	
, Texture		N/A	CLA	(LOAM	HEAVY CLAY		34086	SLTY CL LO N/A			
RDL = Reportable Detect N/A = Not Applicable	ion Lim	it	·				-					
xam ID		Р	T7182		PT7183	PT718	4		PT7185	5		
xam ID pling Date			2T7182 16/07/14		PT7183 2016/07/1				PT7185 2016/07/			
pling Date	UNITS	201		QC Bat	2016/07/1	4 2016/07	/15	QC Bat	2016/07/	/15	RDL	QC B
pling Date	UNITS	201	6/07/14	QC Bat	2016/07/1	4 2016/07	/15	QC Bat	2016/07/	/15	RDL	QC B
pling Date	UNITS %	201	6/07/14	QC Bat 84402	2016/07/1 tch SRWC16022	4 2016/07	/15 26-AP	QC Bat	2016/07/ ch SRWC16026	/15		QC B 8440
pling Date Properties		201	16/07/14 2 16022-BM		2016/07/1 tch SRWC16022	4 2016/07 -CK SRWC160	/15 26-AP		2016/07/ ch SRWC16026	/15		-
pling Date Properties ium Carbonate Equivalent		201	16/07/14 2 16022-BM		2016/07/1 tch SRWC16022 96 29	4 2016/07 -CK SRWC160	/15 26-AP		2016/07/ ch SRWC16026	/15		-
Properties ium Carbonate Equivalent sical Properties	%	201	16/07/14 C16022-BM 3.5	84402	2016/07/1 tch SRWC16022 96 29 82 <2.0	4 2016/07 -CK SRWC160 0.70	/15 26-AP	844029	2016/07/ ch SRWC16026 06 0.91 37 5.7	/15	0.60	8440
Properties ium Carbonate Equivalent sical Properties nd by hydrometer	%	201	3.5 10 10	84402 84394	2016/07/1 tch SRWC16022 96 29 82 <2.0 82 27	4 2016/07 -CK SRWC160 0.70 28	/15 26-AP	844029	2016/07/ ch SRWC16026 96 0.91 87 5.7 37 26	/15	0.60	844(

RESULTS OF CHEMICAL ANALYSES OF SOIL

axxam ID		PT7186	PT7187	PT7188	PT7189	PT7220		
mpling Date		2016/07/15	2016/07/16	2016/07/16	2016/07/16	2016/07/19	9	
	UNITS	SRWC16026-CK	SRWC16033-AP	SRWC16033-BM	SRWC16033-CH	K SRWC16080-A	APK I	RDL QC B
il Properties								
lcium Carbonate Equivalent	%	18	1.6	0.82	32	3.0	0	0.60 8440
nysical Properties			•					
sand by hydrometer	%	4.9	47	14	4.6	39		2.0 8439
silt by hydrometer	%	14	37	30	29	30		2.0 8439
ay Content	%	81	17	56	67	31		2.0 8439
exture	N/A	HEAVY CLAY	LOAM	CLAY	HEAVY CLAY	CLAY LOAN	1 1	N/A 8434
		077224	07722			DT7222		
/A = Not Applicable		1					1	
Maxxam ID		PT7221	PT7222		PT7223	PT7223		
		PT7221 2016/07/1			PT7223 2016/07/20	2016/07/20		
Maxxam ID	UN		9 2016/07/	/19	-		RDL	QC Batch
Maxxam ID	UN	2016/07/1	9 2016/07/	/19	2016/07/20	2016/07/20 SRWC16097-AP	RDL	QC Batch
Maxxam ID Sampling Date		2016/07/1	9 2016/07/	/19	2016/07/20	2016/07/20 SRWC16097-AP	ļ	QC Batch
Maxxam ID Sampling Date Soil Properties		2016/07/1 ITS SRWC16080-I	9 2016/07/ BMK SRWC1608	0-CK QC Batch	2016/07/20 SRWC16097-AP	2016/07/20 SRWC16097-AP Lab-Dup	ļ	
Maxxam ID Sampling Date Soil Properties Calcium Carbonate Equivale		2016/07/1 ITS SRWC16080-1 6 4.0	9 2016/07/ BMK SRWC1608	0-CK QC Batch	2016/07/20 SRWC16097-AP	2016/07/20 SRWC16097-AP Lab-Dup	ļ	
Maxxam ID Sampling Date Soil Properties Calcium Carbonate Equivale Physical Properties	ent 9	2016/07/1 ITS SRWC16080-1 6 4.0	9 2016/07/ BMK SRWC1608 26	/19 CO-CK QC Batch 8440296	2016/07/20 SRWC16097-AP 1.4	2016/07/20 SRWC16097-AP Lab-Dup 1.4	0.60	8440278
Maxxam ID Sampling Date Soil Properties Calcium Carbonate Equivale Physical Properties % sand by hydrometer	ent 9	2016/07/1 ITS SRWC16080-I 6 4.0	9 2016/07/ BMK SRWC1608 26 3.7	(19 CCK QC Batch 8440296 8439482	2016/07/20 SRWC16097-AP 1.4 19	2016/07/20 SRWC16097-AP Lab-Dup 1.4 N/A	0.60	8440278 8440387

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		PT7224	PT7225		
Sampling Date		2016/07/20	2016/07/20		
	UNITS	SRWC16097-BG	SRWC16097-CK	RDL	QC Batch
Soil Properties					
Calcium Carbonate Equivalent	%	18	18	0.60	8440278
Physical Properties					
% sand by hydrometer	%	3.7	8.7	2.0	8439482
% silt by hydrometer	%	22	20	2.0	8439482
Clay Content	%	74	71	2.0	8439482
Texture	N/A	HEAVY CLAY	HEAVY CLAY	N/A	8434087
RDL = Reportable Detection Lim	nit				
N/A = Not Applicable					

GENERAL COMMENTS

I	Each temperature is the average	of up to	three cooler tem	neratures taken at receint
I	Lacii temperature is the average	JI UP LU	three cooler term	iperatures taken at receipt

Package 1	14.7°C
Package 2	13.7°C

Sample PT7181-01 : SLTY CL LO = SILTY CLAY LOAM

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/Q			Darametar	Date	Malua	Decovoru		OC Limite
Batch		QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
843573 843573		QC Standard RPD	Saturation % Saturation %	2016/10/18 2016/10/18	0.78	101	% %	89 - 111 12
843733		QC Standard		2016/10/18	0.78	106	%	12 84 - 116
843733		Spiked Blank	Soluble Conductivity Soluble Conductivity	2016/10/18		99	%	90 - 110
843733		Method Blank	Soluble Conductivity	2016/10/18	<0.020	99	∞ dS/m	90 - 110
843733		RPD	-		<0.020 13		us/m %	35
843733			Soluble Conductivity Soluble (CaCl2) pH	2016/10/18 2016/10/19	15	100	%	55 97 - 103
843810				2016/10/19			%	97 - 103 97 - 103
843810		•	Soluble (CaCl2) pH		1 2	100		97 - 103 N/A
843810			Soluble (CaCl2) pH	2016/10/19	1.2	100	% %	
			Soluble (CaCl2) pH	2016/10/19		100		97 - 103
843810			Soluble (CaCl2) pH	2016/10/19	17	100	%	97 - 103
843810			Soluble (CaCl2) pH	2016/10/19	1.7	100	%	N/A
843811			Soluble (CaCl2) pH	2016/10/19		100	%	97 - 103
843811		•	Soluble (CaCl2) pH	2016/10/19	0.40	100	%	97 - 103
843811			Soluble (CaCl2) pH	2016/10/19	0.19	400	%	N/A
843812			Soluble (CaCl2) pH	2016/10/19		100	%	97 - 103
843812		•	Soluble (CaCl2) pH	2016/10/19		100	%	97 - 103
843812			Soluble (CaCl2) pH	2016/10/19	1.1	400	%	N/A
843812			Soluble (CaCl2) pH	2016/10/19		100	%	97 - 103
843812		•	Soluble (CaCl2) pH	2016/10/19	o = 0	100	%	97 - 103
843812			Soluble (CaCl2) pH	2016/10/19	0.78		%	N/A
843812			Soluble (CaCl2) pH	2016/10/19		100	%	97 - 103
843812		•	Soluble (CaCl2) pH	2016/10/19		100	%	97 - 103
843812			Soluble (CaCl2) pH	2016/10/19	3.1		%	N/A
843813			Soluble (CaCl2) pH	2016/10/19		100	%	97 - 103
843813		•	Soluble (CaCl2) pH	2016/10/19	_	100	%	97 - 103
843813			Soluble (CaCl2) pH	2016/10/19	0.55		%	N/A
843830	01 JB9	QC Standard	% sand by hydrometer	2016/10/19		98	%	75 - 125
			% silt by hydrometer	2016/10/19		98	%	75 - 125
			Clay Content	2016/10/19		109	%	75 - 125
843830	01 JB9	RPD	% sand by hydrometer	2016/10/19	7.5		%	35
			% silt by hydrometer	2016/10/19	1.3		%	35
			Clay Content	2016/10/19	3.9		%	35
843850	08 CJ5	Matrix Spike	Soluble Calcium (Ca)	2016/10/19		94	%	75 - 125
			Soluble Magnesium (Mg)	2016/10/19		103	%	75 - 125
			Soluble Sodium (Na)	2016/10/19		96	%	75 - 125
			Soluble Potassium (K)	2016/10/19		101	%	75 - 125
843850	08 CJ5	QC Standard	Soluble Calcium (Ca)	2016/10/19		100	%	75 - 125
			Soluble Magnesium (Mg)	2016/10/19		103	%	75 - 125
			Soluble Sodium (Na)	2016/10/19		104	%	75 - 125
			Soluble Potassium (K)	2016/10/19		90	%	75 - 125
843850	08 CJ5	Spiked Blank	Soluble Calcium (Ca)	2016/10/19		95	%	75 - 125
1			Soluble Magnesium (Mg)	2016/10/19		102	%	75 - 125
			Soluble Sodium (Na)	2016/10/19		97	%	75 - 125
			Soluble Potassium (K)	2016/10/19		99	%	75 - 125
843850	08 CJ5	Method Blank	Soluble Calcium (Ca)	2016/10/19	<1.5		mg/L	
			Soluble Magnesium (Mg)	2016/10/19	<1.0		mg/L	
1			Soluble Sodium (Na)	2016/10/19	<2.5		mg/L	
1			Soluble Potassium (K)	2016/10/19	<1.3		mg/L	
843850	08 CJ5	RPD	Soluble Calcium (Ca)	2016/10/19	11		%	35
			Soluble Magnesium (Mg)	2016/10/19	NC		%	35
1			Soluble Sodium (Na)	2016/10/19	NC		%	35

QUALITY ASSURANCE REPORT(CONT'D)

	QA/QC				Date			-	
	Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery		QC Limits
				Soluble Potassium (K)	2016/10/19	NC		%	35
	8438899	LX	QC Standard	Saturation %	2016/10/20		99	%	89 - 111
	8438899	LX	RPD [PT7136-01]	Saturation %	2016/10/20	1.0		%	12
	8438966	LX	QC Standard	Saturation %	2016/10/20		100	%	89 - 111
	8438966	LX	RPD [PT6987-01]	Saturation %	2016/10/20	2.0		%	12
	8439482	JB9	QC Standard	% sand by hydrometer	2016/10/19		99	%	75 - 125
				% silt by hydrometer	2016/10/19		101	%	75 - 125
				Clay Content	2016/10/19		101	%	75 - 125
	8439482	JB9	RPD [PT7136-01]	% sand by hydrometer	2016/10/19	2.6		%	35
				% silt by hydrometer	2016/10/19	1.9		%	35
				Clay Content	2016/10/19	NC		%	35
	8439504	BJO	QC Standard	Soluble Conductivity	2016/10/20		104	%	84 - 116
	8439504	BJO	Spiked Blank	Soluble Conductivity	2016/10/20		99	%	90 - 110
	8439504	BJO	Method Blank	Soluble Conductivity	2016/10/20	<0.020		dS/m	
	8439504	BJO	RPD [PT7136-01]	Soluble Conductivity	2016/10/20	3.0		%	35
	8439579	BJO	QC Standard	Soluble Conductivity	2016/10/20		103	%	84 - 116
	8439579	BJO	Spiked Blank	Soluble Conductivity	2016/10/20		99	%	90 - 110
	8439579	BJO	Method Blank	Soluble Conductivity	2016/10/20	<0.020		dS/m	
	8439579	BJO	RPD [PT6987-01]	Soluble Conductivity	2016/10/20	1.7		%	35
	8440065	LX	QC Standard	Saturation %	2016/10/20		101	%	89 - 111
	8440065	LX	RPD	Saturation %	2016/10/20	0.36		%	12
	8440278	ACZ	QC Standard	Calcium Carbonate Equivalent	2016/10/21		104	%	75 - 125
	8440278	ACZ	Spiked Blank	Calcium Carbonate Equivalent	2016/10/21		102	%	80 - 120
	8440278	ACZ	Method Blank	Calcium Carbonate Equivalent	2016/10/21	<0.60		%	
	8440278	ACZ	RPD [PT7223-01]	Calcium Carbonate Equivalent	2016/10/21	NC		%	35
	8440286	ACZ	QC Standard	Calcium Carbonate Equivalent	2016/10/21		102	%	75 - 125
1	8440286	ACZ	Spiked Blank	Calcium Carbonate Equivalent	2016/10/21		104	%	80 - 120
	8440286	ACZ	Method Blank	Calcium Carbonate Equivalent	2016/10/21	<0.60		%	
	8440286	ACZ	RPD [PT6986-01]	Calcium Carbonate Equivalent	2016/10/21	1.2		%	35
}	8440296	ACZ	QC Standard	Calcium Carbonate Equivalent	2016/10/21		102	%	75 - 125
	8440296	ACZ	Spiked Blank	Calcium Carbonate Equivalent	2016/10/21		98	%	80 - 120
	8440296	ACZ	Method Blank	Calcium Carbonate Equivalent	2016/10/21	<0.60		%	
	8440296	ACZ	RPD [PT7134-01]	Calcium Carbonate Equivalent	2016/10/21	NC		%	35
	8440387	JB9	QC Standard	% sand by hydrometer	2016/10/20		102	%	75 - 125
				% silt by hydrometer	2016/10/20		97	%	75 - 125
				Clay Content	2016/10/20		100	%	75 - 125
	8440387	JB9	RPD [PT6987-01]	% sand by hydrometer	2016/10/20	1.7		%	35
				% silt by hydrometer	2016/10/20	0.52		%	35
ł.				Clay Content	2016/10/20	0.52		%	35
	8440389	PM5	Matrix Spike [PT6987-01]	Soluble Calcium (Ca)	2016/10/20		93	%	75 - 125
				Soluble Magnesium (Mg)	2016/10/20		93	%	75 - 125
				Soluble Sodium (Na)	2016/10/20		94	%	75 - 125
				Soluble Potassium (K)	2016/10/20		96	%	75 - 125
	8440389	PM5	QC Standard	Soluble Calcium (Ca)	2016/10/20		104	%	75 - 125
				Soluble Magnesium (Mg)	2016/10/20		97	%	75 - 125
				Soluble Sodium (Na)	2016/10/20		99	%	75 - 125
				Soluble Potassium (K)	2016/10/20		84	%	75 - 125
	8440389	PM5	Spiked Blank	Soluble Calcium (Ca)	2016/10/20		94	%	75 - 125
				Soluble Magnesium (Mg)	2016/10/20		94	%	75 - 125
				Soluble Sodium (Na)	2016/10/20		94	%	75 - 125
				Soluble Potassium (K)	2016/10/20		96	%	75 - 125
Į	8440389	PM5	Method Blank	Soluble Calcium (Ca)	2016/10/20	<1.5		mg/L	

i.

STANTEC CONSULTING LTD Client Project #: 110773396.301.600.208.5 Site Location: WEST OF CALGARY Sampler Initials: BL, KF, WC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery		QC Limit
			Soluble Magnesium (Mg)	2016/10/20	<1.0		mg/L	
			Soluble Sodium (Na)	2016/10/20	<2.5		mg/L	
			Soluble Potassium (K)	2016/10/20	<1.3		mg/L	
8440389	PM5	RPD [PT6987-01]	Soluble Calcium (Ca)	2016/10/20	4.5		%	35
			Soluble Magnesium (Mg)	2016/10/20	3.1		%	35
			Soluble Sodium (Na)	2016/10/20	4.4		%	35
			Soluble Potassium (K)	2016/10/20	NC		%	35
8440591	PM5	Matrix Spike [PT7136-01]	Soluble Calcium (Ca)	2016/10/20		97	%	75 - 12
			Soluble Magnesium (Mg)	2016/10/20		106	%	75 - 12
			Soluble Sodium (Na)	2016/10/20		105	%	75 - 12
			Soluble Potassium (K)	2016/10/20		105	%	75 - 12
3440591	PM5	QC Standard	Soluble Calcium (Ca)	2016/10/20		111	%	75 - 12
			Soluble Magnesium (Mg)	2016/10/20		111	%	75 - 12
			Soluble Sodium (Na)	2016/10/20		108	%	75 - 12
			Soluble Potassium (K)	2016/10/20		85	%	75 - 12
3440591	PM5	Spiked Blank	Soluble Calcium (Ca)	2016/10/20		93	%	75 - 12
			Soluble Magnesium (Mg)	2016/10/20		102	%	75 - 12
			Soluble Sodium (Na)	2016/10/20		101	%	75 - 12
			Soluble Potassium (K)	2016/10/20		100	%	75 - 12
3440591	PM5	Method Blank	Soluble Calcium (Ca)	2016/10/20	<1.5		mg/L	
			Soluble Magnesium (Mg)	2016/10/20	<1.0		mg/L	
			Soluble Sodium (Na)	2016/10/20	<2.5		mg/L	
			Soluble Potassium (K)	2016/10/20	<1.3		mg/L	
440591	PM5	RPD [PT7136-01]	Soluble Calcium (Ca)	2016/10/20	2.1		%	35
	_		Soluble Magnesium (Mg)	2016/10/20	3.3		%	35
			Soluble Sodium (Na)	2016/10/20	NC		%	35
			Soluble Potassium (K)	2016/10/20	0.21		%	35
3440628	BJO	QC Standard	Soluble Conductivity	2016/10/20	•	91	%	84 - 11
3440628	BJO	Spiked Blank	Soluble Conductivity	2016/10/20		99	%	90 - 11
3440628	BJO	Method Blank	Soluble Conductivity	2016/10/20	<0.020	55	dS/m	50 11
3440628	BJO	RPD	Soluble Conductivity	2016/10/20	7.4		%	35
3441210	PM5	Matrix Spike	Soluble Calcium (Ca)	2016/10/20	7.4	94	%	75 - 12
	1 1015	Muth Spike	Soluble Magnesium (Mg)	2016/10/20		103	%	75 - 12
			Soluble Sodium (Na)	2016/10/20		105	%	75 - 12
			Soluble Potassium (K)	2016/10/20		105	%	75 - 12
3441210	DM5	QC Standard	Soluble Calcium (Ca)	2016/10/20		85	%	75 - 12
441210	1 1015	Qe Standard	Soluble Magnesium (Mg)	2016/10/20		87	%	75 - 12
			Soluble Sodium (Na)	2016/10/20		99	%	75 - 12
			Soluble Potassium (K)	2016/10/20		84		
441210	DME	Spiked Plank		2016/10/20		84 97	%	75 - 12
6441210	PIVIS	Spiked Blank	Soluble Calcium (Ca)				%	75 - 12
			Soluble Magnesium (Mg)	2016/10/20		106	%	75 - 12
			Soluble Sodium (Na)	2016/10/20		108	%	75 - 12
444240	DN 45	Mastle and Diamite	Soluble Potassium (K)	2016/10/20	.4 5	108	%	75 - 12
8441210	PIVI5	Method Blank	Soluble Calcium (Ca)	2016/10/20	<1.5		mg/L	
			Soluble Magnesium (Mg)	2016/10/20	<1.0		mg/L	
			Soluble Sodium (Na)	2016/10/20	<2.5		mg/L	
			Soluble Potassium (K)	2016/10/20	<1.3		mg/L	
3441210	PM5	RPD	Soluble Calcium (Ca)	2016/10/20	14		%	35
			Soluble Magnesium (Mg)	2016/10/20	9.8		%	35
			Soluble Sodium (Na)	2016/10/20	2.8		%	35

i.

1

Ň

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNI	S QC Limits
			Soluble Potassium (K)	2016/10/20	NC	%	35

N/A = Not Applicable

N

× ÷

IJ N Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Suwan Fock, B.Sc., QP, Inorganics Senior Analyst

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CHAIN OF CUSTODY RECORD

712(2)

Page 1 of 5

		Inve	oice In	formatio	on		Re	port Informatio	n (if diffe	rs from i	nvoi	ce)					P	rojec	t Info	orma	tion	X.,					Tur	narc	ound	Time (TAT) Required
Con	ipany :			Stante	C		Company							Quot	atio	n #:										x	5 - 7	/ Day	/s Reg	gular (Most analyses)
Con	tact Name:			Bret Le	oppky		Contact N	lame:						P.O.	#/ AI	FE#:										LEAS	E PRO	VIDE	ADVA	ANCE NOTICE FOR RUSH PROJECTS
Add	ress:		101	50 - 112	Street		Address:									_											Rush	TAT	í (Sur	rcharges will be applied)
			Edm	onton, 1	T5K2L6									Proje	ct #:	8		110)7733	96.3	801.6	00.2	208.5				Sam	ie Da	ŧγ	2 Days
Pho	ne:		78	30.265.5	5837		Phone:							Site L	ocat	ion:	10		V	Vest	of C	alga	ry				1 Da	iy		3-4 Days
Ema	il:	br	et.leop	opky@st	tantec.c	com	Email:							Site #				1	1077	339	6 - S	31			Da	te R	equir	red:		
Copi				rster@s		and the first of t	Copies:							Samp	led	Ву:		B.le	oppky	/K.Fo	rster/	W.Ch	iiyoka		Ru	sh C	onfir	mat	ion #	t:
	121			1 siciol	J Labo	oratory U	Ise Only											Ar	alysi	s Re	ques	ted		_	_		-			Regulatory Criteria
	arriesent	VX	1	. 1 i				Depot Recep	tion								ב													AT1/CCME
	eal Intact oling Media	~ ~ ~	-1	1	15	15										Diss	Neg													Drinking Water
Se	al Present	YES NO	Gogler	1	Loss	1											Dissolved		Clay)										ZE	Saskatchewan
	eal Intact oling Media	13	Temp	14	13	14	- S - 1									2				=									ANALYZE	
	al Present	YES NO	Cooler	ID	1.97	-					s	VOC			2	tals	i pro i	(uo	pu, S	andfi	ter)								T AN	D50 (Drilling Waste)
S	eal Intact bling Media		Temp								containers		5	4	Nate	d Me		micr	% Sa	Class II Landfill	rome		0						O NO	Other:
COL	ning weura	Sample	e Ident	ification	n		Depth (Unit)	Date Sampled	Time Sampled	Matrix	of cont	BTEX F1	BTEX F1-F2	BTEX F1-F4	Routine Water	Regulated Metals	Salinity d'	Sieve (75 micron)	Texture (% Sand, Şilt,	aic Cla	PSA (hydrometer)		TOC (LECO)					-	HOLD - DO NOT	
Ī	-					-	espen (enit)	(YYYY/MM/DD)	(HH:MM)	MIDLIN	° #	BTE	BTB	BTE	Roi	Reg	Sall	Sie	Tex	Basic (PS/	CCE	TO						Ŷ	Special Instructions
1	-			03-Ahk				9/22/2016		soil			_				×				х	х	x	_						
2	-	_		003-Ck		_		9/22/2016		soil			_				×				x	x							_	
3	4	SF	RBL160	03-Ckgj				9/22/2016		soil							×	_			x	x		_						
4	<u></u>	S	RBL16	019-Ap				9/24/2016		soil							×				x	x	x							
5	- d	5	RBL160)19-Bm		-		9/24/2016		soil							x				x	x	9							
6	-	S	RBL16	019-Ck				9/24/2016		soil							x				x	x								
7		S	RKF160	002-Ap				7/13/2016		soil							x				x	х	x							
8		S	RKF160)02-Bgj				7/13/2016		soil							x				x	x								×
9		SF	KF160	02-Ckgj				7/13/2016		soil							x				x	x								
10	-	S	RKF160)13-Ap				7/14/2016		soil					Î		×				x	x	x							
	Pl	ease in	dicate	Filtered	l, Prese	rved or l	Both (F, P, F/	′P) ———		/////	*			3				1												
P	Relinquish	ed by:	(Signa	ture/ Pr	rint)	DATE (Y)	YYY/MM/DD)	Time (HH:MM)	Re	ceived b	y: (Sign	atur	e/ Pr	int)		D	TE (Y	YYY/	им/	DD)	Tim	ne (HH	:MM)					Max	xxam Job #
									A	2		5	E	~	1	uh/	to	2	VE	10	iki	11	24	G	1.00	F	BC	G	05	828 D_T
															-0		T	~	10			ŕ		-			~ ~	1		

AB FCD-00331/6

Max kam

CHAIN OF CUSTODY RECORD

Page 2 of 5

	Invoice Information	Report Information	n (if differs fro	m invo	oice)					P	oject	Info	mat	ion				-	Turn	around	Time (TAT) Required
Company :	Stantec	Company:				_	Quo	tatio	n #:_									х	5 - 7	Days Regu	ilar (Most analyses)
Contact Name:	Bret Leoppky	Contact Name:					P.O.	#/ A	FE#:									PLEAS	E PROV	IDE ADVA	NCE NOTICE FOR RUSH PROJEC
Address:	10160 - 112 Street	Address:							-										Rush	TAT (Sur	harges will be applied)
	Edmonton, T5K2L6						Proj	ect #			110	77339	6.3	01.60	0.208	3.5			Same	Day	2 Days
Phone:	780.265.5837	Phone:					Site	Locat	tion:			W	est o	of Cal	gairy				1 Day	5	3-4 Days
Email:	bret.leoppky@stantec.com	Email:					Site	#:		1.5	1	10773	396	- SR1	_		D	ate R	lequir	ed:	
Copies:	kahlie.forster@stantec.com	Copies:						pled				oppky/l	(For:	ster/W	Chiyo	ka	R	ush C	Confirm	nation #:	
	1d61614 Laboratory U	se Only					1				Ana	alysis	Req	ueste	d		1		_		Regulatory Criteria
Seal Present	YES NO Gooler ID	Depot Recept	ion		1	T					Т	ΓT		T		TT			TT		AT1/CCME
Seal Intact	Temp 14 15 15			-					Diss	ed	1										
Cooling Media	YES NO GOOLET UP			- 1						Dissolved		5									Drinking Water
Seal Present Seal Intact	Temp 14 12 14								2			, Clay)				11				ANALYZE	Saskatchewan
Cooling Media	YES NO Cooler ID			04							-	I, Silt,	quil	-							D50 (Drilling Waste
Seal Present				Pre	VOC			ter	Aeta	Total	cror	Sanc	I Lan	nete					11	DO NOT	Other:
Seal Intact Cooling Media	Temp			ntair			1-F4	e Ma			75 m	%) =	ass l	/dror	100				1 1	DO	
	Sample Identification	Depth (Unit) Date Sampled (YYYY/MM/DD)	Time Sampled Ma (HH:MM)	xi # of containers		BTEX F1-F2	BTEX F1-F4	Routine Water	Regulated Metals	Mercury Salinity #	Sieve (75 micron)	Texture (% Sand,	Basic Class II Landfill	PSA (hydrometer)						- ULUL	Special Instructions
1	SRKF16013-Ck	7/14/2016	so				. 4.			×	-			1.1	x						18
2	SRKF16080-Ap	7/19/2016	so	il						x				x	x >						1. A A A A A A A A A A A A A A A A A A A
3	SRKF16080-Bmk	7/19/2016	so	il						x				x	x						1 -Ta
4	SRKF16080-Ck	7/19/2016	sc	il						x				x	ĸ						14
5	SRKF16097-Ah	7/20/2016	sc	il						×				x	×	1					
6	SRKF16097-Ck	7/20/2016	sc	ił						×				x :	ĸ						
7	SRKF16098-Ahkgj	7/20/2016	sc	il						x				x :	x >						
8	SRKF16098-Ckg	7/20/2016	sc	il						x				x	ĸ						
9	SRKF16098-LFH	7/20/2016	so	il 👘						x					>						
10	SRKF16107-Ckg	7/21/2016	so	il						×				x	ĸ						
P	Please indicate Filtered, Preserved or L	Both (F, P, F/P)		\rightarrow															2		
Relinquish	hed by: (Signature/ Print) DATE (Y)	YY/MM/DD) Time (HH:MM)	Receiv	ed by:	(Sig	natu	re/ F	Print)	D	ATE (Y	YYY/N	1M/	DD)	lime	(HH:MI	/I)				xam Job #
	8		A	\geq	J.	en	09	W	h/1	to	20	160	01	4	1	246			BG	908	28 D_T

CHAIN OF CUSTODY RECORD

Page 3 of 5

	Invoice Information	Report Information (if differs	from invoice)		Project Information	Turnaround Time	(TAT) Required
Company :	Stantec	Company:		Quotation #:		x 5 - 7 Days Regular (M	1ost analyses)
	Bret Leoppky	Contact Name:		P.O. #/ AFE#:		PLEASE PROVIDE ADVANCE NO	DTICE FOR RUSH PROJECTS
	10160 - 112 Street	Address:				Rush TAT (Surcharge	s will be applied)
	Edmonton, T5K2L6			Project #:	110773396.301.600.208.5	Same Day	2 Days
Phone:	780.265.5837	Phone:		Site Location:	West of Calgary	1 Day	3-4 Days
Email:	bret.leoppky@stantec.com	Email:	*	Site #:	110773396 - SR1	Date Required:	
Copies:	kahlie.forster@stantec.com	Copies:		Sampled By:	B.leoppky/K.Forster/W.Chiyoka	Rush Confirmation #:	
	1) FLYGRUG Laboratory U	se Only			Analysis Requested	B	Regulatory Criteria
Seal Present Seal Intact Cooling Media Seal Present Seal Intact Cooling Media Seal Present Seal Intact Cooling Media	YES NOT Cooler ID Temp 14 Temp 14	Depot Reception	# of containers BTEX F1 VOC BTEX F1_F2	BTEX F1-F4 Routine Water Regulated Metals Tot Diss D Mercury Total Dissolved D	salinity 4 3 Sieve (75 micron) Texture (% Sand, Şilt, Clay) Basic Class II Landfill PSA (hydrometer) CCE TOC (LECO)	DO NOT ANALYZE	AT1/CCME Drinking Water Saskatchewan D50 (Drilling Waste) Other:
	Sample Identification	Depth (Unit) Date Sampled Sampled (YYYY/MM/DD) (HH:MM)	Maturix BTEX F1 BTEX F1 BTEX F1-F2	BTEX F1-F4 Routine Wa Regulated N Mercury	salinity gr 3 Sieve (75 mic Texture (% S, Basic Class II PSA (hydrom CCE TOC (LECO)		pecial Instructions
1	SRKF16107-Om	7/21/2016	soil		x x		
2	SRKF16118-Apk	7/21/2016	soil		x x x x		
3	SRKF16118-Bgk	7/21/2016	soil		x x x		
4	SRKF16118-Ckj	7/21/2016	soil		x x x		
5	SRWC16007-Ck1	7/12/2016	soil		x x x *		
6	SRWC16007-Ck2	7/12/2016	soil		x x x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
7	SRWC16007-LFH	7/12/2016	soil		x x		
8	SRWC16013-Ahk	7/14/2016	soil		x x x x		
9	SRWC16013-Cgk	7/14/2016	soil		x x x ø		
10	SRWC16020-Ap	7/14/2016	soil		x x x x		2
	Please indicate Filtered, Preserved or I		>		DATE (YYYY/MM/DD) Time (HH:MM	1) Maxxam	loh #
Kelinquisł	hed by: (Signature/ Print) DATE (Y)	ryy/MM/DD) Time (HH:MM) Re	ceived by: (Signati		1+5-20161014 124		

AB FCD-00331/6

CHAIN OF CUSTODY RECORD

Page 4 of 5

	Invoice Information	Report Informa	tion (if differ	rs from i	nvoi	ce)					P	roject	Info	rma	tion					ļ	Turnai	ound T	ime (TAT) Required
Company :	Stantec	Company:						Quo	tatio	n #: _									[x	5 - 7 Da	ys Regu	lar (Most analyses)
Contact Name:	Bret Leoppky	Contact Name:						P.O.	#/ A	FE#:									PLI	EASE F	PROVID	E ADVAN	CE NOTICE FOR RUSH PROJECTS
Address:	10160 - 112 Street									-										R	ush TA	T (Surc	harges will be applied)
-	Edmonton, T5K2L6							Proje	ect #			110	77339	96.3	01.60	0.20	8.5			S	Same D	ау	2 Days
Phone:	780.265.5837	Phone:	4					Site	Loca	tion:	_		w	est	of Ca	lgary	6			1	L Day		3-4 Days
Email:	bret.leoppky@stantec.com	Email:						Site	#:			1	10773	3396	5 - SR	1		1	Date	e Rec	quired	:	W
Copies:	kahlie.forster@stantec.com	Copies:						Sam	pled	Ву: _		B.lec	ppky/	K.For	ster/V	/.Chiy	oka		Rusi	h Cor	nfirma	tion #:	
	Laboratory U	se Only				_						Ana	alysis	Rec	luest	ed							Regulatory Criteria
Seal Present Seal Intact Cooling Media Seal Present Seal Intact Cooling Media Seal Present Seal Intact Cooling Media	YES NO COOLER ID YES NO COOLER ID YES NO COOLER ID YES NO COOLER ID Temp 14 13 14 YES NO Cooler ID Temp Temp	Depot Re		J.	of containers	F1 🗌 VOC 🗍	1-F2	1-F4	Routine Water	Metals Tot Diss	ry Iotal Uissolved U	Sieve (75 micron)	Texture (% Sand, Silt, Clay)	Basic Class II Landfill	PSA (hydrometer)		ECO)					- DO NOT ANALYZE	AT1/CCME Drinking Water Saskatchewan D50 (Drilling Waste) Other:
	Sample Identification	Depth (Unit) Date Sampl (YYYY/MM/D		Matrix	# of co	BTEX F	BTEX F1-F2	BTEX F1-F4	Routin	Regula	Mercury Salinity # 2	Sieve (Texture	Basic C	PSA (h)	CCE	IOC (LECU)					- DIOH	Special Instructions
1	SRWC16020-Ck	7/14/201	6	soil					1		,	5	2		x	x							
2	SRWC16022-Ap	7/14/201	6	soil							,				x	x	x						
3	SRWC16022-Bm	7/14/201	6	soil)				x	x					1	\sim	
4	SRWC16022-Ck	7/14/201	6	soil			,			-)				x	x							
5	SRWC16026-Ap	7/15/201	6	soil							>				x	x	x						
6	SRWC16026-Bmgj	7/15/201	6	soil		-					>				x	x							
7	SRWC16026-Ck	7/15/201	6	soil							,				x	x							
8	SRWC16033-Ap	7/16/201	6	soil							>				х	x	x						
9	SRWC16033-Bm	7/16/201	6	soil							,				x	x			194				
10	SRWC16033-Ck	7/16/201	6	soil				-			X				х	x							
P	lease indicate Filtered, Preserved or I		1		->																		
Relinquish	ed by: (Signature/ Print) DATE (Y)	YY/MM/DD) Time (HH:N	M) Re	ceived		11.1.00.11			and the second second		-			C.C. STAR			(HH:N						xam Job #
		6	A	-	\supset	+ 2	te	N	nal	ng/	to	-2	6/1	610	7/4	12	24	6	0	B (690	282	8 D-T

AB FCD-00331/6

CHAIN OF CUSTODY RECORD

Page <u>5</u> of <u>5</u>

	Invoice Information	Rep	ort Informatio	n (if differ	s from i	nvoic	e)		5.1			Pro	oject	Inform	nati	on			-		Turna	arour	nd Tim	ne (TAT) Required
Company :	Stantec	Company							Quota	ation	#:			12	_					x	5 - 7 0	Days R	Regular	(Most analyses)
Contact Name	Bret Leoppky	Contact N	ame:						P.O. #	/ AF	E#:								Р	LEASE	PROVI	DE AD	VANCE	NOTICE FOR RUSH PROJECT
Address:	10160 - 112 Street	Address:																			Rush T	TAT (S	Surcha	rges will be applied)
	Edmonton, T5K2L6								Projec	:t #:			1107	73396	5.30	1.600.	208.5	5			Same	Day		2 Days
Phone:	780.265.5837	Phone:							Site Lo	ocat	ion:			We	st o	f Calga	агу				1 Day			3-4 Days
Email:	bret.leoppky@stantec.com	Email:							Site #				11	07733	396	- SR1			Da	te Re	equire	d:		
Copies:	kahlie.forster@stantec.com	Copies:							Samp	led I	By:		B.leo	ppky/K.	Forst	er/W.C	hiyoka	l	Ru	sh Co	onfirm	nation	n #:	
	A)FADIGIUIU Laboratory L	Jse Only	- S.S. (16.25)	S									Ana	lysis F	lequ	ested	1						1	Regulatory Criteria
Seal Present Seal intact Cooling Media Seal Present Seal intact Cooling Media Seal Present Seal intact Cooling Media	YES NO Cooler ID Image: Cooler ID Temp /4/ /5 /5 YES NO Cooler ID Image: Cooler ID <t< th=""><th></th><th>Depot Recept</th><th>tion</th><th></th><th>ainers</th><th>1 🗌 voc 🔲</th><th>1-F2</th><th>1-F4</th><th>1</th><th>Regulated Metals Tot Diss U Mercury Total Dissolved</th><th>3</th><th>Sieve (75 micron)</th><th>Texture (% Sand, Silt, Clay)</th><th></th><th>PSA (hydrometer) CCE</th><th>ECO)</th><th></th><th></th><th></th><th></th><th>DO NOT ANALYZE</th><th></th><th>AT1/CCME Drinking Water Saskatchewan D50 (Drilling Waste) Other:</th></t<>		Depot Recept	tion		ainers	1 🗌 voc 🔲	1-F2	1-F4	1	Regulated Metals Tot Diss U Mercury Total Dissolved	3	Sieve (75 micron)	Texture (% Sand, Silt, Clay)		PSA (hydrometer) CCE	ECO)					DO NOT ANALYZE		AT1/CCME Drinking Water Saskatchewan D50 (Drilling Waste) Other:
	Sample Identification	Depth (Unit)	Date Sampled (YYYY/MM/DD)	Time Sampled (HH:MM)	Matrix	# of co	BTEX F1	BTEX F1-F2	BTEX F1-F4	Koutine	Regulated Mercury	Salinity # 3	Sieve (7	Texture	ביי יי	CCE	TOC (LECO)					HOLD - DO		Special Instructions
1	SRWC16080-Apk		7/19/2016		soil	7						×			×	x	x							
2	SRWC16080-Bmk		7/19/2016		soil							x			x	x								
3	SRWC16080-Ck		7/19/2016		soil							x			x	x						-192		
4	SRWC16097-Ap		7/20/2016		soil			-				x			x	x	x				6			
5	SRWC16097-Bg		7/20/2016		soil							x			x	x	:9:							
6	SRWC16097-C 📈		7/20/2016		soil							x			x	x		-						
7					soil																		-	
8					soil															-				
9					soil					1														
10					soil																			
Sector inte	Please indicate Filtered, Preserved or		(→			*						1									2015-00
Relinquis	hed by: (Signature/ Print) DATE (Y	YYY/MM/DD)	Time (HH:MM)		ceived			-	-					YY/MI	1.51.554		me (H	H:MM)		k i l	N	Иахха	m Job #
				A	$\overline{\diamond}$	J	ēn.	ne	h)a.	Itor	2	0/1	610	14	1	24	+6	_	B	69	0	828	3 D-T

Your P.O. #: N/A Your Project #: 110773396.301.600.208.5 Site#: B690828 Your C.O.C. #: na

Attention:Stantec Reporting

Stantec Consulting Ltd 200 325 25 St SE Calgary, AB Canada T2A 7H8

> Report Date: 2016/11/03 Report #: R4234518 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6N4804 Received: 2016/10/29, 10:20

Sample Matrix: Soil

Samples Received: 18

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Reference
Total Organic Carbon in Soil	18	N/A	2016/11/0	3 CAM SOP-00468	BCMOE TOC Aug 2014

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 8

Stantec Consulting Ltd Client Project #: 110773396.301.600.208.5 Your P.O. #: N/A

RESULTS OF ANALYSES OF SOIL

Maxxam ID		D	IT574		DIT574		DIT575	DIT	576	DIT5	77		
Sampling Date		201	6/09/22	20	16/09/22	2 20	16/09/24	2016/	07/13	2016/0	7/14		
COC Number			na		na		na	n	а	na	1		
	UNIT	S SRBL1	6003-AI	нк	16003-A ab-Dup	HK SRB	L16019-AP	SRKF16	002-AP	SRKF160)13-AP	RDL	QC Batch
Inorganics	·												
Total Organic Carbon	mg/k	g g	8000		95000		72000	100	000	760	00	500	4726852
RDL = Reportable Detect QC Batch = Quality Contr Lab-Dup = Laboratory Ini	ol Batch	licate											
Maxxam ID		DIT	578	DIT5	579	Dľ	T580	DIT	581	DIT	582		
Sampling Date		2016/	07/19	2016/0	07/20	2016	/07/20	2016/	07/20	2016/	07/21		
COC Number		n	а	na	à		na	n	а	n	а		
	UNITS	SRKF16	080-AP	SRKF160)97-AH	SRKF160	98-AHKGJ	SRKF16	098-LFH	SRKF16	107-01	/I RD	L QC Batc
norganics								-					
Total Organic Carbon	mg/kg	660	00	350	00	16	0000	140	000	750	000	50	0 472685
1axxam ID ampling Date		DIT5 2016/0			584 /07/12		DIT585 .6/07/14	-	Г586 /07/14		T587 /07/14		
OC Number		na		r	na		na		na		na		
	UNITS	SRKF161	18-APK	SRWC16	6007-LFH	I SRWC	16013-AHK	SRWC1	.6020-AF	SRWC1	6022-/	AP RI	DL QC Bat
norganics						·		•		·			
otal Organic Carbon	mg/kg	1700	000	160	0000	1	10000	73	000	58	3000	50	0 47268
DL = Reportable Detectior C Batch = Quality Control													
Maxxam ID			DI	T588	DI	T589	DITS	590	DIT	591			
Sampling Date			2016	/07/15	2016	/07/16	2016/0	07/19	2016,	/07/20			
COC Number				na	1	na	na	a	r	าล			
		UNITS	SRWC1	6026-AP	SRWC1	.6033-AF	SRWC160	080-АРК	SRWC1	6097-AP	RDL	QC Ba	tch
Inorganics													
Total Organic Carl	bon	mg/kg	37	7000	12	0000	720	00	65	000	500	47268	352
RDL = Reportable QC Batch = Qualit													

Stantec Consulting Ltd Client Project #: 110773396.301.600.208.5 Your P.O. #: N/A

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DIT574 SRBL16003-AHK Soil					Collected: Shipped: Received:	2016/09/22 2016/10/29	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Total Organic Carbon in S	oil	COMB	4726852	N/A	2016/11/03	Bramdeo I	<i>M</i> otiram	
Maxxam ID: Sample ID: Matrix:	DIT574 Dup SRBL16003-AHK Soil					Collected: Shipped: Received:	2016/09/22 2016/10/29	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Total Organic Carbon in S	oil	СОМВ	4726852	N/A	2016/11/03	Bramdeo Motiram		
Maxxam ID: Sample ID: Matrix:	DIT575 SRBL16019-AP Soil		2.11			Collected: Shipped: Received:	2016/09/24 2016/10/29	
Test Description	- 11	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	A - 11	
Total Organic Carbon in S	011	COMB	4726852	N/A	2016/11/03	Bramdeo I	lotiram	
Maxxam ID: Sample ID: Matrix:	DIT576 SRKF16002-AP Soil					Collected: Shipped: Received:	2016/07/13 2016/10/29	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Total Organic Carbon in S	oil	СОМВ	4726852	N/A	2016/11/03	Bramdeo I	Motiram	
Maxxam ID: Sample ID:	DIT577							
Matrix:	SRKF16013-AP					Collected: Shipped: Received:	2016/07/14 2016/10/29	
Test Description	SRKF16013-AP	Instrumentation	Batch	Extracted	Date Analyzed	Shipped:		
	SRKF16013-AP Soil	Instrumentation COMB	Batch 4726852	Extracted N/A	Date Analyzed 2016/11/03	Shipped: Received:	2016/10/29	
Test Description	SRKF16013-AP Soil				•	Shipped: Received: Analyst	2016/10/29 Motiram 2016/07/19	
Test Description Total Organic Carbon in S Maxxam ID: Sample ID:	SRKF16013-AP Soil DIT578 SRKF16080-AP				•	Shipped: Received: Analyst Bramdeo M Collected: Shipped:	2016/10/29 Motiram 2016/07/19	
Test Description Total Organic Carbon in S Maxxam ID: Sample ID: Matrix:	SRKF16013-AP Soil DIT578 SRKF16080-AP Soil	СОМВ	4726852	N/A	2016/11/03	Shipped: Received: Analyst Bramdeo I Collected: Shipped: Received:	2016/10/29 Motiram 2016/07/19 2016/10/29	
Test Description Total Organic Carbon in S Maxxam ID: Sample ID: Matrix: Test Description	SRKF16013-AP Soil DIT578 SRKF16080-AP Soil	COMB	4726852 Batch	N/A Extracted	2016/11/03 Date Analyzed	Shipped: Received: Analyst Bramdeo M Collected: Shipped: Received: Analyst	2016/10/29 Motiram 2016/07/19 2016/10/29 Motiram 2016/07/20	
Test Description Total Organic Carbon in S Maxxam ID: Sample ID: Matrix: Test Description Total Organic Carbon in S Maxxam ID: Sample ID:	SRKF16013-AP Soil DIT578 SRKF16080-AP Soil Goil DIT579 SRKF16097-AH	COMB	4726852 Batch	N/A Extracted	2016/11/03 Date Analyzed	Shipped: Received: Analyst Bramdeo M Collected: Shipped: Received: Analyst Bramdeo M Collected: Shipped:	2016/10/29 Motiram 2016/07/19 2016/10/29 Motiram 2016/07/20	

Stantec Consulting Ltd Client Project #: 110773396.301.600.208.5 Your P.O. #: N/A

TEST SUMMARY

Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Brandeo Motiram Maxxam ID: DTTS91 Sample ID: SRK716099-LFH Snipped:	Maxxam ID: Sample ID: Matrix:	DIT580 SRKF16098-AHKGJ Soil					Collected: Shipped: Received:	2016/07/20 2016/10/29
Maxxam ID: DITS81 Simple Di SRF16099-LFH Matrix: Soil Shipped: Received: 2016/10/20 Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITS82 Solid Collected: 2016/10/20 Shipped: Received: 2016/11/03 Bramdeo Motiram Maxxam ID: DITS82 Solid Solid Collected: 2016/11/03 Bramdeo Motiram Maxxam ID: DITS82 Solid Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITS83 Sample ID: SRK16118-APK Received: 2016/10/29 Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Matrix: Soil Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Matrix: Soil COMB 4	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sample ID:SRKF16098-LFH Matrix:Shipped: Received:Shipped: Received:Shipped: Received:Shipped: Received:Shipped: 2016/10/29Test DescriptionIn StrumentationBatchExtractedDate AnalyzedAnalystMaxxam ID:DITS82 Sample ID:SRKF16107-OMExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilCOMB4726852N/A2016/11/03Brandeo MoltramMaxxam ID:DITS83 Sample ID:SRKF15118-APK Matrix:Collected:2016/07/21 Shipped: Received:2016/10/29Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystMaxxam ID:DITS83 Sample ID:SRKF15118-APK Matrix:Collected:2016/07/21 Shipped: Received:2016/10/29Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilCOMB4726852N/A2016/11/03Brandeo MoltramMaxxam ID:DITS84 Sample ID:SRWC16007-LFH Matrix:Collected:2016/10/292016/10/29Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilCOMB4726852N/A2016/11/03Brandeo MoltramTotal Organic Carbon in SoilCOMB4726852N/A2016/11/03Brandeo MoltramTot	Total Organic Carbon in S	oil	СОМВ	4726852	N/A			Vlotiram
Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Matrix: DIT582 Sample ID: SRKF16107-OM Matrix: Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Matrix: Soil Instrumentation Batch Extracted Date Analyzed Analyst Maxxam ID: Matrix: DIT584 Collected: 2016/10/12 Sinpped: Received: 2016/10/12 Sample ID: SRWC16007-LFH Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Matrix: Soil Sample ID: SRWC16020-LFH Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A </td <td>Sample ID:</td> <td>SRKF16098-LFH</td> <td></td> <td></td> <td></td> <td></td> <td>Shipped:</td> <td></td>	Sample ID:	SRKF16098-LFH					Shipped:	
Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Matrix: DIT582 Sample ID: SRKF16107-OM Matrix: Collected: Sinpped: Received: 2016/10/21 Sinpped: Received: Soilo/07/21 Sinpped: Received: Soilo/07/21 Sinpped: Received: Total Organic Carbon In Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Sample ID: SRKF16118-APK Matrix: DIT583 Sample ID: SRKF16118-APK Matrix: Collected: 2016/11/03 Bramdeo Motiram Maxxam ID: Maxxam ID: Matrix: DIT584 COMB Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Matrix: DIT584 Sample ID: SRWC16007-LFH Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: Matrix: DIT584 Sample ID: SRWC16013-AHK Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Matrix: Soil Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Maxxam ID: DITSB2 Sample ID: SRKF16107-OM Matrix: Solid Collected: 2016/07/21 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITSB3 Sample ID: SRKF16118-APK Matrix: Soil Collected: 2016/10/21 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITSB4 Soil Collected: 2016/07/12 Shipped: Received: 2016/07/12 Maxxam ID: DITSB4 Soil Collected: 2016/07/12 Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/17/12 Shipped: Received: 2016/07/14 Maxxam ID: DITS85 Collected: 2016/07/14 Shipped: Received:	-	oil			N/A	-		Motiram
Total Organic Carbon In Soll COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITS83 Sample ID: SRKF16118-APK Matrix: Soll Collected: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Maxxam ID: DITS84 Sample ID: SRWC16007-LFH Matrix: Soil Collected: 2016/11/03 Bramdeo Motiram Maxxam ID: DITS84 Sample ID: SRWC16007-LFH Matrix: Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITS84 Sample ID: SRWC16007-LFH Matrix: Soil Collected: 2016/10/29 Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITS85 Sample ID: SRWC16013-AHK Matrix: Soil Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DITS86 Sample ID:	Sample ID: Matrix:	SRKF16107-OM					Shipped: Received:	
Maxxam ID: DIT583 Sample ID: SRKF16118-APK Shipped: Received: Collected: 2016/07/21 Shipped: Received: Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT584 Collected: 2016/07/12 Shipped: Received: 2016/10/29 Maxxam ID: DIT584 Collected: 2016/10/29 Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT585 Collected: 2016/10/29 Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT585 Collected: 2016/07/14 Shipped: Received: 2016/07/14	•	- 11				-		4 - 11
Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT584 Sample ID: SRWC16007-LFH Collected: 2016/17/12 Shipped: Matrix: Soil Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT585 Sample ID: SRWC16013-AHK Extracted Date Analyzed Analyst Matrix: Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT585 Sample ID: SRWC16013-AHK Collected: 2016/07/14 Matrix: Soil Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT586 Collected: 2016/07/14 Shipped: Received: 2016/07/14 Matrix: Soil COMB 4726852 N/A 2016/11/03 Bramdeo Mo	Maxxam ID: Sample ID:	DIT583 SRKF16118-APK					Collected: Shipped:	2016/07/21
Maxxam ID: DIT584 Sample ID: Collected: 2016/07/12 Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT585 Sample ID: SRWC16013-AHK Matrix: Collected: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Matrix: Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Test Description Instrumentation Batch Extracted Date Analyzed Analyst Maxxam ID: DIT586 Sample ID: SRWC16020-AP Matrix: Collected: 2016/07/14 Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sample ID: SRWC16007-LFH Matrix: Snipped: Shipped: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT585 Sample ID: SRWC16013-AHK Matrix: Soil Collected: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT586 Sample ID: SRWC16020-AP Matrix: Soil Collected: 2016/07/14 Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst	Total Organic Carbon in S	oil	СОМВ	4726852	N/A	2016/11/03	Bramdeo I	Motiram
Total Organic Carbon in SoilCOMB4726852N/A2016/11/03Bramdeo MotiramMaxxam ID:DIT585Sample ID:SRWC16013-AHKCollected:2016/07/14Shipped: Received:2016/10/29Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilCOMB4726852N/A2016/11/03Bramdeo MotiramMaxxam ID:DIT586 Sample ID:SRWC16020-AP Matrix:SoilCollected:2016/07/14 Shipped: Received:2016/10/29Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystMaxxam ID:DIT586 Sample ID:SRWC16020-AP Matrix:Collected:2016/07/14 Shipped: Received:2016/10/29Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalyst	Sample ID:	SRWC16007-LFH					Shipped:	
Maxxam ID: DIT585 Collected: 2016/07/14 Sample ID: SRWC16013-AHK Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT586 Collected: 2016/07/14 Shipped: Collected: 2016/07/14 Matrix: Soil Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT586 Collected: 2016/07/14 Shipped: Received: 2016/10/29 Matrix: Soil Instrumentation Batch Extracted Date Analyzed Analyst	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sample ID: SRWC16013-AHK Matrix: Shipped: Soil Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT586 Sample ID: SRWC16020-AP Matrix: Soil Collected: 2016/07/14 Shipped: Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst	Total Organic Carbon in S	oil	СОМВ	4726852	N/A	2016/11/03	Bramdeo I	Motiram
Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram Maxxam ID: DIT586 Sample ID: SRWC16020-AP Collected: 2016/17/14 Matrix: Soil Soil Collected: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst	Sample ID:	SRWC16013-AHK					Shipped:	
Maxxam ID: DIT586 Collected: 2016/07/14 Sample ID: SRWC16020-AP Shipped: Received: 2016/10/29 Matrix: Soil Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sample ID: SRWC16020-AP Shipped: Matrix: Soil Received: 2016/10/29 Test Description Instrumentation Batch Extracted Date Analyzed Analyst	Total Organic Carbon in S	oil	СОМВ	4726852	N/A	2016/11/03	Bramdeo I	Motiram
	Sample ID:	SRWC16020-AP					Shipped:	
Total Organic Carbon in Soil COMB 4726852 N/A 2016/11/03 Bramdeo Motiram	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
	Total Organic Carbon in S	oil	СОМВ	4726852	N/A	2016/11/03	Bramdeo I	Motiram

Stantec Consulting Ltd Client Project #: 110773396.301.600.208.5 Your P.O. #: N/A

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DIT587 SRWC16022-AP					Collected: Shipped: Received:	2016/07/14
watrix:	Soil					Received:	2016/10/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	Soil	СОМВ	4726852	N/A	2016/11/03	Bramdeo	Motiram
Maxxam ID: Sample ID: Matrix:	DIT588 SRWC16026-AP Soil					Collected: Shipped: Received:	2016/07/15 2016/10/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	Soil	СОМВ	4726852	N/A	2016/11/03	Bramdeo	Motiram
Maxxam ID: Sample ID: Matrix:	DIT589 SRWC16033-AP Soil					Collected: Shipped: Received:	2016/07/16 2016/10/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	Total Organic Carbon in Soil		4726852	N/A	2016/11/03	Bramdeo Motiram	
Maxxam ID: Sample ID: Matrix:	DIT590 SRWC16080-APK Soil					Collected: Shipped: Received:	2016/07/19 2016/10/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	Soil	СОМВ	4726852	N/A	2016/11/03	Bramdeo	Motiram
Maxxam ID: Sample ID: Matrix:	DIT591 SRWC16097-AP Soil					Collected: Shipped: Received:	2016/07/20 2016/10/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in Soil		СОМВ	4726852	N/A	2016/11/03	Bramdeo	Motiram

Stantec Consulting Ltd Client Project #: 110773396.301.600.208.5 Your P.O. #: N/A

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.3°C

Results relate only to the items tested.

Stantec Consulting Ltd Client Project #: 110773396.301.600.208.5 Your P.O. #: N/A

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4726852	BMO	QC Standard	Total Organic Carbon	2016/11/03		110	%	75 - 125
4726852	BMO	Method Blank	Total Organic Carbon	2016/11/03	<500		mg/kg	
4726852	BMO	RPD [DIT574-01]	Total Organic Carbon	2016/11/03	2.5		%	35

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Stantec Consulting Ltd Client Project #: 110773396.301.600.208.5 Your P.O. #: N/A

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eve 6 Eva Pranjie

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.