Technical Document LA24009

Part 2 - Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facilityfies)

NRCB USE ONLY		Application number	Legal land description
\square Approval $\quad \underbrace{}_{\text {Registration }} \square$ Authorization	$L A 24009$	NE 20-10-21 W4M	

APPLICATION DISCLOSURE

This information is collected under the authority of the Agricultural Operation Practices Act (AOPA), and is subject to the provisions of the Freedom of Information and Protection of Privacy Act. This information is public unless the NRCB grants a written request that certain sections remain private.

Any construction prior to obtaining an NRCB permit is an offence and is subject to enforcement action, including prosecution.
I, the applicant, or applicant's agent, have read and understand the statements

Ron Bezooyen
Print name

GENERAL INFORMATION REQUIREMENTS

Proposed facilities: list all proposed confined feeding operation facilities and their dimensions. Indicate whether any of the proposed facilities are additions to existing facilities. (attach additional pages if needed)

Proposed facilities	see below for comments	Dimensions (m) (length, width, and depth)
Sheep Barn - Ewes and Lambs	already constructed	$63 \mathrm{~m} \times 27 \mathrm{~m}$
Sheep Barn Corrals - Ewes other Lambs	already constructed	$63 \mathrm{~m} \times 17 \mathrm{~m}$
Sheep Corrals - Feeders	already constructed	$145 \mathrm{~m} \times 55 \mathrm{~m}$
Catch Basin		$23 \mathrm{~m} \times 23 \mathrm{~m} \times 2 \mathrm{~m}^{-->}$see below
	Catch basin dimensions changed to $25 \mathrm{~m} \times 25 \mathrm{~m} \times 2.5 \mathrm{~m}$ deep	

Existing facilities: list ALL existing confined feeding operation facilities and their dimensions		
Existing facilities	Dimensions (m) (length, width, and depth)	NRCB USE ONLY
N/A		
NRCB USE ONLY		
The ewes and lambs and the feeder facilities are already constructed (the sheep barn and corrals		
form one facility).		

If a new facility is replacing an old facility, please explain what will happen to the old facility and when. N / A

\square

Construction completion date for proposed facilities

Dec 31, 2025
Additional information
$\left[\begin{array}{l}\text { AO comment: In addition to the facilities listed, there are also three larger pens located } \\ \text { immediately adjacent to the east of the sheep feedlot pens. These pens are used for cow/calf pai } \\ \text { only. The operator is aware that these pens cannot be used for other purposes. }\end{array}\right]$

Livestock numbers: Complete only if livestock numbers are different from what was identified in the Part 1 application. Note: if livestock numbers increase in your Part 2 application, a new Part 1 application must be submitted which may result in a loss of priority for minimum distance separation (MDS).

Livestock category and type (Available in the Schedule 2 of the Part 2 Matters Regulation)	Permitted number	Proposed increase or decrease in number (if applicable)	Total
AO comment: The application is for 1000	ewes with lambs and	1000 sheep feeders	

Figure 2 - Bezooyen Sheep Facility - Site Map

OPTION 1: Applying through the NRCB for both the AOPA permit and the Water Act licence
 I DO want my water licence application coupled to my AOPA permit application.

Signed this \qquad day of \qquad 20 \qquad .

Signature of Applicant or Agent

OPTION 2: Processing the AOPA permit and Water Act licence separately

1. I (we) acknowledge that the CFO will need a new water licence from EPA under the Water Act for the development or activity proposed in this AOPA application.
2. I (we) request that the NRCB process the AOPA application independently of EPA's processing of the CFO's application for a water licence.
3. In making this request, I (we) recognize that, if this AOPA application is granted by the NRCB, the NRCB's decision will not be considered by EPA as improving or enhancing the CFO's eligibility for a water licence under the Water Act.
4. I (we) acknowledge that any construction or actions to populate the CFO with livestock pursuant to an AOPA permit in the absence of a Water Act licence will not be relevant to EPA's consideration of whether to grant the Water Act licence application.
5. I (we) acknowledge that any such construction or livestock populating will be at the CFO's sole risk if the Water Act licence application is denied or if the operation of the CFO is otherwise deemed to be in violation of the Water Act. This risk includes being required to depopulate the CFO and/or to cease further construction, or to remove "works" or "undertakings" (as defined in the Water Act).
6. AS RELEVANT: I (we) acknowledge that the CFO is located in the South Saskatchewan River Basin and that, pursuant to the Bow, Oldman and South Saskatchewan R [Alta. Reg. 171/2007], this basin is currently closed to new surface
7. Provide: Water licence application number(s) Documents on file

Signed this 15 day of Feb 2024.

OPTION 3: Additional water licence not required

1. I (we) declare that the CFO will not need a new licence from EPA under the Water Act for the development or activity proposed in this AOPA application.
2. Provide: Water license number(s) or water conveyance agreement details \qquad

Signed this \qquad day of \qquad 20 \qquad _.

Part 2 - Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

GENERAL ENVIRONMENTAL INFORMATION

(complete this section for the worst case of the existing facility which is the closest to water bodies or water wells and for each of the proposed facilities)
Facility description / name (as indicated on site plan)
Existing:
Proposed 1: Lambing Barn
Proposed 2: Lamb - Feeder Corrals
Proposed 3:
Catch Basin

Facility and environmental risk information		Facilities				NRCB USE ONLY	
		Existing	Proposed 1	Proposed 2	Proposed 3	Meets requirements	Comments
	What is the elevation of the floor of the lowest manure storage or collection facility above the $1: 25$ year flood plain or the highest known flood level?	$\begin{aligned} & \square>1 \mathrm{~m} \\ & \square \leq 1 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \square>1 \mathrm{~m} \\ & \square \leq 1 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \square>1 \mathrm{~m} \\ & \square \leq 1 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \square>1 \mathrm{~m} \\ & \square \leq 1 \mathrm{~m} \end{aligned}$	\square YES \square no \square YES with exemption	Not located in known flood plain
	How many springs are within 100 m of the manure storage facility or manure collection area?		0	0	0	凶 YES \square No YES with exemption	none observed or listed in EPA water well database
	How many water wells are within 100 m of the manure storage facility or manure collection area?		0	0	0	《 YES \square No \square YES with exemption	none observed or listed in EPA water well database
	What is the shortest distance from the manure collection or storage facility to a surface water body? (e.g. lake, creek, slough, seasonal)		2000m	2000m	2000m	\square YES \square No \square YES with exemption	43 m to the outskirts of the coule system draining into the Oldman River
	What is the depth to the water table?		>1m	>1m	>1m	\square yes \square No \square YES with exemption	Between 1.1 m and 3.5 m See drilling report attached
	What is the depth to the groundwater resource/aquifer you draw water from?		>10m	>10m	>10m	© YES \square No \square YES with exemption	No wells within a 1 mile radius (below drilling depth)

Additional information (attach supporting information, e.g. borehole logs, records, etc. you consider relevant to your application)
See attached geotechincal report from WSP

Part 2 - Technical Requirements

NRCB USE ONLY
 ENVIRONMENTAL RISK SCREENING INFORMATION

ERST for proposed facilities
see Decision Summary for details

Facility	Groundwater score	Surface water score	File number

ERST for existing facilities New CFO

Facility	Groundwater score	Surface water score	File number

ERST related comments:

Part 2 - Technical Requirements

NRCB USE ONLY
 WATER WELL AND SURFACE WATER INFORMATION

Well IDs:
No wells within 400 m of a CFO facility

Surface water related concerns from directly affected parties or referral agencies:
Groundwater related concerns from directly affected parties or referral agencies:
\square yes $\square_{\text {no }}$
\square YES \boxtimes NO
Water wells 㐫 N/A
If applicable, exemption for 100 m distance requirements applied: \square YES \square NO Condition required: \square YES \square NO
Surface water \boxtimes N/A
If applicable, exemption for 30 m distance requirements applied: \square YES \square NO Condition required: \square YES \square NO

Water Well Exemption Screening Tool
凶 N/A

Water Well ID	Preliminary Screening Score	Secondary Screening Score	Facility

Groundwater or surface water related comments:

Part 2 - Technical Requirements

NRCB
Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)
DISTANCE OF ANY MANURE STORAGE FACILITY (EXISTING OR PROPOSED) TO NEIGHBOURING RESIDENCES

DISTANCE OFANY			NRCB USE ONLY				
Neighbour name(s)	Legal land description	Distance (m)	Zoning (LUB) category	MDS category (1-4)	Distance (m)		Meets regulations
Schooten	NW 21-10-21W4M	470m	RA	1	462 m		yes
A Koppe	SW 29-10-21W4M	760m	RA	1	761 m		yes
nkoppe							

RA = Rural agriculture
LAND BASE FOR MANURE AND COMPOST APPLICATION (complete only if an increase in livestock or manure production will occur)

* If you are not the registered landowner, you must attach copies of land use agreements signed by all landowners.
** Available manure spreading area (excluding setback areas from residences, common bodies of water, water wells, etc. as identified in Agdex 096-5 Manure Spreading Regulations)
*** Brown, dark brown, black, grey wooded, or irrigated
Additional information (attach any additional information as required)

Bezooyen
Area and Site Map
NE 20-10-21W4M

Figure 1 - Bezooyen Sheep Facility Near Picture Butte, AB. - Area Map

Part 2 - Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

NRCB USE ONLY		
MINIMUM DISTANCE SEPARATION		
Methods used to determine distance (if applicable): Google earth		
Margin of error (if applicable): $\quad+/-2 \mathrm{~m}$		
Requirements (m): Category 1: 254 m Category 2: 338 m	Category 3: 423 m	Category 4: 676 m
Technology factor:	\square YES 兇	No
Expansion factor:	\square YES \boxtimes	
MDS related concerns from directly affected parties or referral agencies:	\square Yes 兇	No

LAND BASE FOR MANURE AND COMPOST APPLICATION

Land base required:
Land base listed:
Area not suitable:
Available areaYES NO

Manure management plan:
\square YES \boxtimes NO
If yes, plan is attached:

PLANS

Submitted and attached construction plans:	$\boxed{\text { YES } \square \text { NO }}$
Submitted aerial photos:	$\boxed{\text { YES } \square \text { NO }}$
Submitted photos:	\square YESNO

GRANDFATHERING

Already completed:
\square YESNo \mathbb{X} / A

New CFO
If already completed, see \qquad

| NRCB USE ONLY |
| :--- | :--- |
| ALL SIGNATURES IN FILE |
| DATES OF APPROVAL OFFICER SITE VISITS |
| May 2,2024 $\square \mathrm{No}$

 |

CORRESPONDENCE WITH MUNICIPALITIES AND REFERRAL AGENCIES

Date deeming letters sent：March 26， 2024
Municipality：Lethbridge County
凹 letter sent 备 response received 兇 written／email \square verbal \square no comments received

Alberta Health Services：NA
\square letter sentresponse received
\square written／email
\square verbal
\square no comments received

Alberta Environment and Parks：
N／A
《 letter sent
response received
凹
written／email
\square verbalno comments received

Alberta Transportation：N／A

兇 letter sent
$\dot{\Delta}$ response received
离
written／emailverbalno comments received

Alberta Regulatory Services：
离 N / A
\square letter sentresponse receivedwritten／email
\square
verbal
no comments received other： \qquad LNID \qquad
 \square N／A


```
SOLID MANURE, COMPOST, \& COMPOSTING MATERIALS: Barns, feedlots, \& storage facilities -
Naturally occurring protective layer
(complete a copy of this section for EACH barn, feedlot, and storage facility for solid manure, composting materials, or compost with
a naturally occurring protective layer for the liner)
Facility description / name (as indicated on site plan)
```

1. Sheep Barn and Corrals - Ewes
2. Sheep Corrals - Feeders

Manure storage capacity

Length (m)	Width (m)	Depth below ground level (m)	NRCB USE ONLY Estimated storage capacity $\left(\mathrm{m}^{3}\right)$	
1.	63 m	44 m	0	
2.	145	55	0	

4 I plan to use a short-term solid manure storage (STMS) as part of my manure storage and handling plan for this CFO. (The AOPA requirements for STMS are set out in the NRCB Short-Term Solid Manure Storage Requirements Fact Sheet.

Surface water control systems

Describe the run-on and runoff control system
Surface water from the corrals will be directed to the catch basin.

Naturally occurring protective layer details

Thickness of naturally occurring protective layer	\qquad	Provide details (as required) RB2-23 Calculated Equivalent Thickne	$\text { to } \mathrm{AOPA}=36 \mathrm{~m}$
Soil texture	8 \% sand	\qquad \% silt	\qquad 38 \% clay
Hydraulic conductivity - naturally occurring protective layer	Depth and type of soil tested $2.9-6.0 \mathrm{~m}$ Clay	Hydraulic conductivity (cm/s) $8.7 \times 10-8 \mathrm{~cm} / \mathrm{s}$	Describe test standard used Modified Falling Head Test
Additional information (attach copies of soil test reports)		NRCB USE ONLY Requirem Conditio Report	ents met: $\boxed{\text { YES } \square \text { NO }}$ required: \boxtimes YES \square NO tached: $\boxed{\text { YES } \square \text { NO }}$

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

RUNOFF CONTROL CATCH BASIN: Naturally occurring protective layer

(complete a copy of this section for EACH proposed runoff control catch basin with a naturally occurring protective layer)

Facility description / name (as indicated on site plan)

1. Catch Basin
2. \qquad
3. \qquad

Determination of runoff area

Provide a plan and show how you calculated the area contributing to runoff for each catch basin
See the attached runoff control plan and calculations

						ee run		NRCB USE ONLY
	Length (m)	Width (m)	Total depth (m)	ground level (m)	Inside end walls	Inside side walls	Outside walls	Calculated storage capacity (excl. 0.5 m freeboard) $\left(\mathrm{m}^{3}\right)$
1.	2825 m	这 25)22.5	22.5	3:1	3:1	n/a	$536 \mathrm{~m}^{3}$
2.								
3.								
TOTAL CAPACITY								

Naturally occurring protective layer details

Thickness of naturally occurring protective layer	3.1 (m)	Provide details (as required) RB2-23 Calculated equivalent thick	ess to AOPA requirements $=36 \mathrm{~m}$
Soil texture	\qquad \% sand	\qquad \% silt	\qquad \% clay
Hydraulic conductivity naturally occurring protective layer	Depth and type of soil tested 2.9-6.0 m deep Clay	Hydraulic conductivity (cm/s) $8.7 \times 10-8 \mathrm{~cm} / \mathrm{s}$	Describe test standard used Modified Falling Head Test (see attached geotechnical report from WSP. Nov/2023)
Catch Basin - Design and management requirements can be found in Technical Guideline Agdex 096-101 If soil info differs per facility include additional soils page.		NRCB USE ONLY Requirements met:\quadCondition required: $\boxed{\text { YES }} \square$ NO Report attached:	

Catch Basin Storage Volume Calculator

Construction Dimensions of Catch Basin		
* Only cells in blue can be changed.		
Overall Dimensions of Catch Basin		Catch Basin Dimensions
Total Length*4	25.0 m	82 ft
Total Width* ${ }_{4}$	25.0 m	82 ft
Total Depth* ${ }_{4}$	2.5 m	8 ft
Design Capacity Depth	2.00 m	7 ft
	run.ine	3 run.rise
Side Slope ${ }_{4}$	3 run:rise	3 run:rise
Length of Bottom	10.0 m	33 ft
Width of Bottom	10.0 m	33 ft
Capacity @ top of Bank	$813 \mathrm{~m}^{3}$	\qquad
Design Capacity of Catch Basin (freeboard level)		Design Capacity (freeboard level)
Length (design capacity depth)	22.0 m	72 ft
Width (design capacity depth)	22.0 m	72 ft
Total Depth	2.5 m	8 ft
Design Capacity Depth	2.00 m	7 ft
End Slope	3 run:rise	3 run:rise
Side Slope	3 run:rise	3 run:rise
Design Capacity (freeboard level)	$536 \mathrm{~m}^{3}$	18,929 ft^{3}
level)	$484 \mathrm{~m}^{2}$	$\underset{\substack{\text { 117,903 Imp. Gal. } \\ 5,210 \\ \mathrm{ft}^{2}}}{ }$

CFO Name $_{1}$	(Enter CFO Name Here)
Land Location $_{1}$	$1-1-4-$ W5

Paved Runoff Catchment Area(s)					
Area ${ }_{2}$	Length (m)	Width (m)	Area $\left(\mathrm{m}^{2}\right)$		
1			0.0		
2			0.0		
3			0.0		
4			0.0		
5	Total Area $\left(\mathrm{m}^{2}\right)$				0.0

Unpaved Runoff Catchment Area(s)					
Area ${ }_{2}$	Length (m)	Width (m)	Area $\left(\mathrm{m}^{2}\right)$		
6	63	17	$1,071.0$		
7	145	55	$7,975.0$		
8			0.0		
9			0.0		
10	Total Area $\left(\mathbf{m}^{2}\right)$				$\mathbf{9 , 0 4 6}$

Rainfall (Select Town $_{3}$)	
Picture Butte 85 AOPA Design Rainfall	85 mm

Part 2 －Technical Requirements

RUNOFF CONTROL CATCH BASIN：Naturally occurring protective layer（cont．）

 NRCB USE ONLYCatch basin calculator．Total volume＠freeboard level： $536 \mathrm{~m}^{3}$ Runoff capacity requirements met： $\mathrm{X} \square$ YES \square NO Calculation of the volume attached：$\quad \square$ YES \square NO

Depth to water table：\quad below 6 m in catch basin area \quad Requirements met：\quad YES \square NO Depth to uppermost groundwater resource： $\begin{aligned} & \text { no water wells in area below } 6 \mathrm{~m}_{\text {Requirements met：}} \quad \boxed{\text { YES }} \square \text { NO }\end{aligned}$ ERST completed：$⿴ 囗 ⿰ 丿 ㇄$

Protective layer specification comments（e．g．sand lenses；layering uniform or irregular；number and location of boreholes）：

Uniform layering of very firm，medium plastic clay－clay loam If yes，please explain．

Part 2 - Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

NRCB USE ONLY RUNOFF CONTROL CATCH BASIN CAPACITY SUMMARY (if applicable)	
Facility 1	
Name / description New catch basin	Capacity $536 \mathrm{~m}^{3}$
Facility 2	
Name / description	Capacity
Facility 3	
Name / description	Capacity
Facility 4	
Name / description	Capacity
TOTAL CAPACITY	$536 \mathrm{~m}^{3}$
RUNOFF VOLUME FROM CONTRIBUTING AREAS	461 m³
MEETS AOPA RUNOFF CONTROL VOLUME REQUIREMENTS	区YES \square NO

Ron Bezooyen
c/o Linkage Ag Solutions
Box 1120
Coaldale, Alberta T1M 1M9

Attention: Mr. Cody Metheral:

Re: Geotechnical Review and Evaluation NRCB Permitting of Existing Pens \& Proposed Catch Basin NE-20-010-21-W4M, near Picture Butte, Alberta

As requested, WSP E\& Canada Limited (WSP) has carried out a geotechnical review and evaluation of the above-captioned site relative to the required protection of the groundwater resource, as required by the Agricultural Operation Practices Act, AB Reg. 267/2001 (hereinafter referred to as "AOPA"). This letter describes site soil conditions to support a permit application related to an area of existing solid manure storage (covered pens and outdoor pens) and a proposed catch basin within NE-20-010-21-W4M (refer to Figure 1, attached).

In order to demonstrate the suitability of the naturally existing soils for consideration as a naturally occurring protective layer to the groundwater, two (2) boreholes were advanced at the site on
May 8, 2023, followed by an additional three (3) boreholes in August, 2023. The boreholes were advanced at the approximate locations denoted as RB1-23 to RB5-23 on Figure 1, attached.

The boreholes were advanced by a truck-mounted drill rig owned and operated by Chilako Drilling Services and extended to depths ranging between 4.5 m and 6.0 m below existing grades. The boreholes were logged by Larry Delong of Chilako Drilling Services.

In general, the natural mineral soils encountered within the boreholes comprised of a layer of lacustrine silt and clay loam, which was generally underlain by stiff medium plastic clay till below approximately 1.5 to 3.6 m depth. It is noted that sand soils and saturated conditions were encountered in a borehole advanced NE of the development area in a low-lying area (RB1-23), while predominantly clay conditions were encountered in the other four boreholes. No groundwater resource (as defined by AOPA) was identified within the current (or proposed) development area within the 6.0 m investigation depth.

Samples of soil collected from the screened zone of the boreholes RB2-23, RB4-23, and RB5-23 as well as a fourth sample from RB3-23 were subjected to laboratory grain size (i.e., hydrometer) analyses. The results (attached) indicate a textural breakdown of approximately:

Table 1: Soil Textural Analyses

Borehole/Depth	\% Sand	\% Silt	\% Clay
RB2-23/4.0-5.4m	8	54	38
RB3-23/4.5-6.0m	7	54	39
RB4-23/4.5-6.0m	10	56	34
RB5-23/3.0-4.5m	12	55	33

To measure the in situ permeability of the subsurface soils, 50 mm diameter PVC monitoring wells were constructed in boreholes RB2-23, RB4-23 and RB5-23. The test wells were screened at various depths from 2.9 m to 6.0 m below existing grades (see Table 2). Well saturation of the 50 mm diameter monitoring wells was carried out by filling the monitoring well to the top for several consecutive days. After several days of saturation, the 24-hour water drop for the wells ranged between 0.23 m and 1.45 m . The 24-hour water drop for each of the monitoring wells are listed in Table 2.

To calculate the permeability of the screened portion of the clay till strata at the test well locations, a modified falling head test (as outlined in the USBR Engineering Geology Field Manual Volume 2 [2001]) was used. The input variables and output data are outlined on the attached In Situ Permeability Test reports. The results of the permeability testing indicate an in situ hydraulic conductivity, $k_{s,}$ values ranging between $1.7 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$ and $8.8 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$ (see Table 2).

Using the measured permeability of the clay stratum, the equivalent natural soil thicknesses of naturally occurring material having a hydraulic conductivity of $1 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$ (the reference standard in AOPA) at the monitoring well locations has been calculated, and those thickness equivalents are presented in Table 2. As indicated, the equivalent thicknesses range between 36 m and 94 m . This represents natural material protection in excess of the minimum requirements outlined by the AOPA for solid manure storage (minimum 2 m , Section $9.5-\mathrm{c}$) and for catch basins (minimum 5 m , Section 9.5-b).

Table 1: Permeability Test Results

Borehole	24-hr Water Drop in Well (\mathbf{m})	Length of Screened Zone $\mathbf{(m)}$	Depth of Screen (\mathbf{m})	Calculated Permeability	Calculated Equivalent $\mathbf{1 \times 1 0 ^ { - 6 }} \mathbf{c m} / \mathbf{s ~ T h i c k n e s s ~}$ $\mathbf{(m)}$
RB2-23	1.45	3.10	$2.9-6.0$	$8.7 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$	36
RB4-23	0.23	1.60	$4.4-6.0$	$1.7 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$	94
RB5-23	0.43	1.60	$2.9-4.5$	$4.4 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$	36

Conclusion

Based on the results of the current investigation, permeability testing, and our understanding of the site and proposed development at the site, it is WSP's opinion that the naturally occurring materials at the site satisfy the AOPA requirements for permitting the existing pens and proposed catch basin at this location.

We trust that this report satisfies your present requirements. Should you have any questions, please contact the undersigned at your convenience.

Yours truly,

WSP E8\& Canada Limited

Co-authored by:
James Le, EIT
Geotechnical Services
Reviewed by:
Kevin Spencer, P.Eng., M.Eng.
Senior. Associate, Geotechnical Engineer

Attachments
Figure 1 Borehole Locations
In Situ Permeability Test Calculations
Hydrometer Test
Soil Profile and Parent Material Description, Chilako Drilling Services

In Situ Permeability Test

Modified Falling Head Permeability Equation

$$
K_{s}=\frac{r^{2}}{2 \ell \Delta t}\left[\frac{\sinh ^{-1} \frac{\ell}{r_{e}}}{2} \ln \left[\frac{2 H_{1}-\ell}{2 H_{2}-\ell}\right]-\ln \left[\frac{2 H_{1} H_{2}-\ell H_{2}}{2 H_{1} H_{2}-\ell H_{1}}\right]\right]
$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

RB2-23 - Ron Bezooyen

WSP File: BX11613

In Situ Permeability Test

Modified Falling Head Permeability Equation

$$
K_{s}=\frac{r^{2}}{2 \ell \Delta t}\left[\frac{\sinh ^{-1} \frac{\ell}{r_{e}}}{2} \ln \left[\frac{2 H_{1}-\ell}{2 H_{2}-\ell}\right]-\ln \left[\frac{2 H_{1} H_{2}-\ell H_{2}}{2 H_{1} H_{2}-\ell H_{1}}\right]\right]
$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

RB4-23 - Ron Bezooyen

WSP File: BX11613

Terms	Value	Definition
D	0.0520	diameter of standpipe (m)
De	0.1500	diameter of borehole (m)
L	1.60	length of sand section (m)
h1	6.60	initial height of water above base of hole (m)
h2	6.37	final height of water above base of hole (m)
,	24.0	time of test (h)

RB5－23

In Situ Permeability Test

Modified Falling Head Permeability Equation

$$
K_{s}=\frac{r^{2}}{2 \ell \Delta t}\left[\frac{\sinh ^{-1} \frac{\ell}{r_{e}}}{2} \ln \left[\frac{2 H_{1}-\ell}{2 H_{2}-\ell}\right]-\ln \left[\frac{2 H_{1} H_{2}-\ell H_{2}}{2 H_{1} H_{2}-\ell H_{1}}\right]\right]
$$

taken from USBR Engineering Geology Field Manual Volume 2 （2001）

RB5－23－Ron Bezooyen

WSP File：BX11613

¢	Terms	Value	Definition
岗	D	0.0520	diameter of standpipe（m）
$\stackrel{\square}{5}$	De	0.1500	diameter of borehole（m）
$\stackrel{\sim}{4}$	L	1.60	length of sand section（m）
＞	h1	5.10	initial height of water above base of hole（m）
5	h2	4.67	final height of water above base of hole（m）
$\underline{2}$	t	24.0	time of test（h）

WSP E\&I Canada Limited
310212 Avenue North
Lethbridge, AB T1H 5V1

WSP E\&I Canada Limited
310212 Avenue North
Lethbridge, AB T1H 5V1

WSP E\&I Canada Limited
310212 Avenue North
Lethbridge, AB T1H 5V1

WSP E\&I Canada Limited
310212 Avenue North
Lethbridge, AB T1H 5V1

CHILAKO DRILLING SERVICES LTD

SOIL PROFILE AND PARENT MATERIAL DESCRIPTION

Site Location: NE20-10-21W4, Ron Bezooyen
Date: 02-May-23

Hole \#	Location	Depth	Texture	Moisture	Geological	Sample	Remarks
RB1-23	$\begin{gathered} 0370099 \\ 5522784 \\ \text { Ponding } \\ \text { area } \end{gathered}$	$\begin{array}{c\|} \hline 0-0.3 \\ 0.3-1.0 \\ 1.0-1.5 \\ 1.5-3.5 \\ 3.5-4.5 \end{array}$	CL C C SiCL M.S.	M VM M VM Sat	Topsoil lac Lac Lac lac		Organic V. Firm, med plastic, brown V. Firm, med-high plastic, gray V. Soft, med plastic, yellow brown Loose Free water @ 0.9m
RB2-23	$\begin{aligned} & 0370091 \\ & 5522703 \end{aligned}$	$\begin{gathered} 0-0.15 \\ 0.15-1.1 \\ 1.1-2.5 \\ 2.5-5.4 \\ 5.4-6.0 \end{gathered}$	$\begin{gathered} \mathrm{CL} \\ \mathrm{CL} \\ \mathrm{CL}-\mathrm{SiCL} \\ \mathrm{CL} \\ \mathrm{CL} \end{gathered}$	M M VM-Sat M M	Topsoil Lac Lac Till Till	$\begin{aligned} & 1.5-2.5 \\ & 4.0-5.4 \end{aligned}$	V. Firm, med plastic, olive brown V. Soft, med plastic, brown, some sand Stiff, med plastic, brown Stiff, med plastic, brown, oxidized 50 mm H.C. Well installed to 6.0 m bgs Screen: 6.0-3.0m Sand: $6.0-2.9 \mathrm{~m}$ Bentonite: $2.9-0.0 \mathrm{~m}$ Stickup: 0.4m Hole Diameter: 0.15m
RB3-23	$\begin{aligned} & 0369982 \\ & 5522698 \end{aligned}$	$\left\lvert\, \begin{gathered} 0-0.15 \\ 0.15-1.8 \\ 1.8-4.5 \\ 4.5-6.0 \end{gathered}\right.$	$\begin{gathered} \mathrm{CL} \\ \mathrm{SiCL} \\ \mathrm{CL} \\ \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	Topsoil Lac Till Till	4.5-6.0	V. Firm, med plastic, olive brown V. Firm, med plastic, brown Stiff, med plastic, brown, iron staining
RB4-23	$\begin{aligned} & 0370119 \\ & 5522605 \end{aligned}$	$\begin{gathered} 0-3.6 \\ 3.6-6.0 \end{gathered}$	$\begin{aligned} & \text { CL } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	Fill Till	4.5-6.0	Stiff, med plastic, brown Stiff, med plastic, brown, organic @ 3.6m 50 mm H.C. Well installed to 6.0 m BGS Screen: 6.0-4.5m Sand: $6.0-4.4 \mathrm{~m}$ Bentonite: 4.4-0.0m Stickup: 0.6m Hole Diameter: 0.15 m
RB5-23	$\begin{aligned} & 0369888 \\ & 5522602 \end{aligned}$	$\begin{gathered} 0-1.5 \\ 1.5-4.5 \end{gathered}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	Till Till		V. Firm, med plastic, brown V. Firm-stiff, med plastic, dark brown 50 mm H.C. Well installed to 4.5 m BGS Screen: 4.5-3.0m Sand: 4.5-2.9m Bentonite: 2.9-0.0m Stickup: 0.6m Hole Diameter: 0.15m
Legend:	L	Loam					
	C	Clay					
	S	Sand					
	Gr.	Gravel					
	Si	Silt					
	F	Fine (sand)					
	VF	Very Fine (sand)					

