Part 2 – Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

NRCB USE ONLY	Application number	Legal land description
Approval Registration Authorizatio	LA25013	N½ 6-11-7 W4M

🗴 Approval	□ Registration	□ Authorization	LA25013	N½ 6-1
_				

Amendment

APPLICATION DISCLOSURE

This information is collected under the authority of the Agricultural Operation Practices Act (AOPA), and is subject to the provisions of the Freedom of Information and Protection of Privacy Act. This information is public unless the NRCB grants a written request that certain sections remain private.

Any construction prior to obtaining an NRCB permit is an offence and is subject to enforcement action, including prosecution.

I, the applicant, or applicant's agent, have read and understand the statements above, and I acknowledge that the information provided in this application is true to the best of my knowledge.

March 18 2025

Date of signing

Signature

Kody Traxel

Corporate name (if applicable)

Print name

GENERAL INFORMATION REQUIREMENTS

Proposed facilities: list all proposed confined feeding operation facilities and their dimensions. Indicate whether any of the proposed facilities are additions to existing facilities. (attach additional pages if needed)

Proposed facilities	Dimensions (m) (length, width, and depth)
Feed Pens North (NE6-11) Area of 13,555.51 M2 Pens& Roads	(Odd Shape, attached)
Feed Pens South (NE6-11) Area of 4401.63 M2 #1	(Odd Shape, attached)
Feed Pens South (NW6-11) Area of 2177.43 M2 #2	(Odd Shape, attached)
New Catch Basin (NE6-11)	34M X 22M X 2.7M
Catch Basin (NW6-11) Increased to 1017 M3 from 725 M3	82M X 15.8M X 2.5M

Existing facilities: list ALL existing confined feeding operation facil	ities and their dimensions	
Existing facilities	Dimensions (m) (length, width, and depth)	NRCB USE ONLY
Feed Pens (Area of 13100M2)	155M X 90M (Approx)	
Catch Basin 725M3	15.5M X 82M X 1.5M Depth	
NRCB USE ONLY		
AO Comment: See next page for dimensions of proposed	feed pens.	

Part 2 — Technical Requirements

Construction completion date for proposed facilities

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

If a new facility is replacing an old facility, please explain what will happen to the old facility and when.	N/A

December 2026

Additional information

AO Comment: Feed pens north proposed to be 136 m x 100 m, irregular shape. Feed pens south #1 proposed to be 81 m x 76. 8 m, irregular shape. Feed pens south #2 proposed to be 32.5 m x 77 m, irregular shape.

Livestock numbers: Complete only if livestock numbers are different from what was identified in the Part 1 application. Note: if livestock numbers increase in your Part 2 application, a new Part 1 application must be submitted which may result in a loss of priority for minimum distance separation (MDS).

Livestock category and type (Available in the Schedule 2 of the Part 2 Matters Regulation)	Permitted number	Proposed increase or decrease in number (if applicable)	Total
Beef Feeders	1000	800	1800
AO Comment: Applicant has indicated that the beef feeders, rather than 1,000 beef feeders p	v are applying to increa	se livestock numbers at livestock proposed for f	this site by 800 this site is 1,800
beef feeders.			

Kody Traxel Proposed CFO Figure 1

(NE CORNER) NW 6-11-7W4 NE 6-11-7W4 2.8KM West of Seven Persons, AB Cypress County. Alberta 1800 HD Beef Feeders

NW 6-11-7W4 / NE 6-11-7W4 Overview Plans

Kody Traxel Proposed CFO Figure 2

Manure Collection Areas Map

Kody Traxel Proposed CFO Figure 1

Run off patterns of area and site and surrounding water sources.

Utilities Map of Property and area.

Part 2 — Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

DECLARATION AND ACKNOWLEDGMENT OF APPLICANT CONCERNING WATER ACT LICENCE

issued by Alberta Environment and Protected Areas (EPA) for a confined feeding operation (CFO) Date and sign one of the following four options

OPTION 1: Applying through the NRCB for both the AOPA permit and the Water Act licence

I DO want my water licence application coupled to my AOPA permit application.

Signed this _____day of ______, 20_____,

Signature of Applicant or Agent

OPTION 2: Processing the AOPA permit and Water Act licence separately

- 1. I (we) acknowledge that the CFO will need a new water licence from EPA under the *Water Act* for the development or activity proposed in this AOPA application.
- 2. I (we) request that the NRCB process the AOPA application **independently of** EPA's processing of the CFO's application for a water licence.
- 3. In making this request, I (we) recognize that, if this AOPA application is granted by the NRCB, the NRCB's decision will not be considered by EPA as improving or enhancing the CFO's eligibility for a water licence under the *Water Act*.
- 4. I (we) acknowledge that any construction or actions to populate the CFO with livestock pursuant to an AOPA permit in the absence of a *Water Act* licence will <u>not</u> be relevant to EPA's consideration of whether to grant the *Water Act* licence application.
- 5. I (we) acknowledge that any such construction or livestock populating will be at the CFO's sole risk if the *Water Act* licence application is denied or if the operation of the CFO is otherwise deemed to be in violation of the *Water Act*. This risk includes being required to depopulate the CFO and/or to cease further construction, or to remove "works" or "undertakings" (as defined in the *Water Act*).
- 6. **AS RELEVANT:** I (we) acknowledge that the CFO is located in the South Saskatchewan River Basin and that, pursuant to the *Bow, Oldman and South Saskatchewan River Basin Water Allocation Order* [Alta. Reg. 171/2007], this basin is currently closed to new surface water allocations.
- 7. Provide: Water licence application number(s) _

Signed this day of	, 20
--------------------	------

Signature of Applicant or Agent

OPTION 3: Additional water licence not required

- 1. I (we) declare that the CFO will not need a new licence from EPA under the *Water Act* for the development or activity proposed in this AOPA application.
- 2. Provide: Water license number(s) or water conveyance agreement details ______
 Water conveyance agreement acquired and will be increased with SMRID

Signed this $\frac{18}{100}$ day of $\frac{\text{March}}{1000}$, $20\frac{25}{1000}$.

Signature of Applicant or Agent

WATER CONVEYANCE AGREEMENT - OTHER USES

(New Users)

IRRIGATION DISTRICTS ACT section 21(2) (a.1)

This Agreement dated the <u>10</u> day of <u>September</u> 2024

Between:

TRAXEL, KODY EMIL & RACHEL DEMAN 7515 TOWNSHIP ROAD 111 CYPRESS COUNTY, AB T0K 1Z0

(the "Applicant")

-and-

ST. MARY RIVER IRRIGATION DISTRICT 525 – 40TH STREET SOUTH LETHBRIDGE, AB T1J 4M1

(the "District")

BACKGROUND:

- 1. The Applicant has applied to the District under section 21(2)(a.1) of the *Irrigation Districts Act* R.S.A. 2000, c. I-11 (the "Act"), to enter into a water conveyance agreement with the District to receive the delivery of water from the District for a purpose other than the use on irrigation acres, for use under an alternate parcel delivery agreement, rural water use, or household purposes.
- 2. The District is the holder of several Licences that authorize the District to deliver water for any of the purposes specified in the Licences.
- 3. Section 6 of the Act authorizes the District to deliver water in accordance with the terms and conditions of the Licences.
- 4. The Applicant proposes that the water will be used on the lands legally described as:

NW-06-11-07-W4тн (the "Lands")

0. The Applicant has applied for the following volume of water: <u>4 acre-feet</u>. (the "Annual Volume")

- 6. The Applicant proposes to use the water for the following purpose: <u>Agriculture Water</u> (the "Purpose")
- 7. The District is prepared to deliver the Annual Volume to the Applicant on the Lands subject to the terms and conditions contained in this Agreement.

AGREEMENT:

The parties agree as follows:

- 1. **DEFINITIONS** In this Agreement:
 - a. "Agreement" means this Agreement including the Background;
 - b. "Annual Fee" means the fee applicable to this Agreement established by the District by a fee bylaw pursuant to section 115 of the Act;
 - c. "Capital Fee" means the fee applicable to this Agreement identified as such in a fee bylaw of the District pursuant to section 115 of the Act;
 - d. "Default" includes the happening of any of the following events:
 - i. failure of the Applicant to pay the Annual Fee by the due date;
 - ii. use of any portion of the Annual Volume for other than the Purpose;
 - iii. use of any portion of the Annual Volume on a parcel of land other than the Lands;
 - iv. failure of the Applicant to pay the Capital Charge;
 - v. the Applicant has used or is using any portion of the Annual Volume in a manner that is causing or may cause loss or damage to property or loss of injury to any person;
 - vi. waste all or any portion of the Annual Volume or permit all or any portion of the Annual Volume to escape from the Lands;
 - vii. the Applicant contravenes any provision of the Act or this Agreement; or

viii. the Applicant files an assignment in Bankruptcy;

- e. "Delivery" means the delivery by the District of the Annual Volume to the Applicant;
- f. "Irrigation Works" means Irrigation Works as defined in the Act;

- g. "Licence" means the total of all the licences held by the District pursuant to the provisions of the *Water Act*, R.S.A. 2000 c. W-3;
- h. "Point of Delivery" means that location on the Irrigation Works of the District at which the Annual Volume is delivered to the Applicant; and
- i. "Turn out Structure" means such structure or works as are required by the District at the Point of Delivery to affect a conveyance the Annual Volume from the Point of Delivery to the Lands.

2. DELIVERY

- a. The District agrees to deliver to the Applicant at the Point of Delivery the Annual Volume.
- b. The Annual Volume shall be delivered at times, rates and amounts as the District may have water available and capacity in its Irrigation Works for such delivery.
- c. The total volume of water delivered in each year under this agreement shall not exceed the Annual Volume.
- 3. PURPOSE The Applicant will use the Annual Volume only for the Purpose and only on the Lands.
- 4. TERM This Agreement shall continue in full force and effect until terminated by either party in accordance with its terms.
- 5. CONSIDERATION In consideration for the Delivery the Applicant agrees to pay to the District fees as established by By-Law pursuant to section 115 of the Act as follows:

 - b. An Annual Fee, due and payable on or before the 31st day of December in each year during the currency of this Agreement,
- 6. POINT OF DELIVERY The District shall deliver the Annual Volume to the Point of Delivery. The water shall be removed from the Irrigation Works of the District at the Point of Delivery through the Turnout Structure. The Turnout Structure shall comply with the Districts standard specifications for such Irrigation Works, and shall be installed by the District, at the expense of the Applicant, and at all times material hereto shall be operated and maintained by the District.

- 7. WORKS All turnout structures, equipment or works installed on the Irrigation Works of the District by the Applicant pursuant to this Agreement, shall become the property of the District.
- 8. METERING The District may require the Applicant to supply, install and maintain a water measurement device approved by the District at the Point of Delivery or such other place as may be designated by the District for the purpose of measuring the amount of the Annual Volume delivered from time to time to the Applicant. The Applicant grants to the District the right and license during the currency of this Agreement to enter upon the Lands and to monitor the use of and record the data collected by the measurement device.
- 9. ORDERING WATER The Applicant shall order the delivery of water and call for the termination of such delivery in accordance with the applicable bylaws and policies of the District.
- 10. INDEMNITY The Applicant shall indemnify and keep indemnified the District against any liability for losses and expenses of whatever kind or nature, including the establishment or increase of a reserve to cover any possible liability and the fees and disbursements of counsel, and against any losses and expenses, which the District may incur in connection with any one or more of the following events or circumstances (the "Events"):
 - a. by reason of having delivered to the Applicant all or any portion of the Annual Volume;
 - b. by reason of the inability of the District to deliver to the Applicant all or any portion of the Annual Volume;
 - c. by reason of the failure of the Applicant to perform or comply with the terms and conditions of this Agreement; and
 - d. in enforcing any of the terms and conditions of this Agreement.
- 11. The District may pay or compromise any claim, demand, suit, judgment or expense arising out of the Events and any such payment or compromise shall be binding upon the Applicant and included as a liability, loss or expense covered by this indemnity, provided the same was made by the District in the reasonable belief that it was liable for the amount disbursed, or that such payment or compromise was reasonable under all the circumstances.
- 12. In the event of any such payment or compromise by the District, an itemized statement of it prepared and certified by the manager or assistant manager of the District, itemizing of such payment or compromise shall be prima facie evidence of the fact and amount of the liability of the Applicant under this Agreement, in respect of the payment or compromise

- 13. The District shall not be liable for any claim either direct, indirect or consequential, for loss, injury or damage whatsoever arising out of the failure or inability of the District to deliver all or any portion of the Annual Volume.
- 14. COMPLIANCE WITH LAWS The Applicant shall comply with and be bound by the provisions of all statutes and regulations applicable to the privileges hereby granted, and with all by-laws of the District regulating the supply and distribution of water.
- 15. DEFAULT In the event the Applicant is in Default of any of the provisions of this Agreement the District may forthwith stop delivery of water or terminate this agreement and in such case there shall be no abatement or refund of the Annual Fee paid by the Applicant to the District during the term of this Agreement prior to the stoppage or termination.
- 16. TERMINATION The Applicant may terminate this Agreement upon providing 30 days written notice to the District of its intention to do so, and following the expiry of the 30 day notice period this Agreement shall be terminated and at an end and from that point forward the Applicant shall have no further right or entitlement to or claim to the delivery of the Annual Volume.
- 17. REFUND OF CAPITAL FEES Upon termination of this Agreement pursuant to Clause 15 Default, or Clause 16 Termination, and provided the Applicant has paid all amounts due under this Agreement for Capital Fees and for Annual Fees, the District may pay to the Applicant such portion of the Capital Fees paid herein by the Applicant as the District may set out in a bylaw passed from time to time.
- 18. WATER QUALITY The Applicant acknowledges that the Irrigation Works of the District is an open ditch system subjecting the water therein to contamination from all manner of environmental, human and animal factors and that the District does not regulate, control or monitor the quality of water in its Irrigation Works.
- 19. The Applicant acknowledges and agrees that the water in the Irrigation Works of the District may not be potable or may not be suitable for the Purpose, and that the District makes no representation, warranty or guarantee, express or implied that the water delivered under this Agreement is potable and fit for human or livestock consumption or suitable for the Purpose for use by the Applicant.
- 20. The Applicant agrees to accept the water delivered in the condition in which it may be found at the Point of Delivery from time to time and to provide such testing, treatment or filtering as the Applicant considers necessary for the use by the Applicant for the Purpose.
- 21. SEASONAL DELIVERY The Applicant acknowledges that the District can deliver the Annual Volume only during the irrigation season and that the water conveyance capacity of the Irrigation Works of the District is limited and the District will deliver, from time to time, so much of the Annual Volume as it, in its exclusive discretion, deems advisable.

22. NON-ASSIGNMENT OR TRANSFER - Neither this Agreement nor any of the rights and privileges contained in this Agreement is assignable or transferable by the Applicant, in whole or in part, without prior written consent of the District.

IN WITNESS WHEREOF the District has by its proper officers signed this Agreement and has affixed the seal of the District hereto, and the Applicant has hereunto set his hand and seal on the day and year first above written.

St. Mary River Irrigation District St. Mary River Irrigation District Applicant

ST. MARY RIVER IRRIGATION DISTRICT

Witness to Signature of the Applicant

Witness to Signature of the Applicant

Applicant

Part 2 – Technical Requirements

NRCB Natural Resources Conservation Board

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

GENERAL ENVIRONMENTAL INFORMATION

(complete this section for the worst case of the existing facility which is the closest to water bodies or water wells and for each of the proposed facilities) Facility description / name (as indicated on site plan)

Feed Pens NE 6-11-7W4 Feed Pens /Catch Basin Existing:

Proposed 2:

Proposed 3: Feed Pen NW 6-11-7W4 Proposed 1: Catch Basin

L								
	Facili	ty and environmental risk		Facil	Itles			NRCB USE ONLY
		information	Existing	Proposed 1	Proposed 2	Proposed 3	Meets requirements	Comments
	Flood plain noitsmrotni	What is the elevation of the floor of the lowest manure storage or collection facility above the 1:25 year flood plain or the highest known flood level?	■ >1 m 1 m	□ □ □	1 ⊐ 1 ⊐	■ 1 × 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	□ YES □ NO □ YES with exemption	
	u :6L	How many springs are within 100 m of the manure storage facility or manure collection area?	0	0	0	0	☐ YES ☐ NO □ YES with exemption	
-	iew 9561ri oitemrotr	How many water wells are within 100 m of the manure storage facility or manure collection area?	0	0	0	0	□ YES □ NO □ YES with exemption	
	u2 1i	What is the shortest distance from the manure collection or storage facility to a surface water body? (e.g., lake, creek, slough, seasonal)	293M	347M	345M	498M	□ YES □ NO □ YES with exemption	
Ар	lwater noiter	What is the depth to the water table?	9.2M +	9.2M +	9.2M +	9.2M +	□ YES □ NO □ YES with exemption	
plication LA2	Grounc inform	What is the depth to the groundwater resource/aquifer you draw water from?	9.2M +	9.2M +	9.2M +	9.2M +	□ YES □ NO □ YES with exemption	
25013 Page 16 of 48	dditional tached is	information (attach supporting info a well report from 1978 on NW 6	mation, e.g. b -11-7W4 and	orehole logs, re more info on (scords, etc. you Soils report at	consider relev tached.	/ant to your applica	ion)

GOWN ID

Rotarv

Water Well Drilling Report

View in Metric Export to Excel

GIC Well ID 203542 GoA Well Tag No. The driller supplies the data contained in this report. The Province disclaims responsibility for its Drilling Company Well ID accuracy. The information on this report will be retained in a public database. Date Report Received Well Identification and Location Measurement in Imperial Owner Name Address Postal Code Town Province Country SEVEN PERSONS SEITZ, LINDA M. 1/4 or LSD SEC TWP RGE W of MER Block Plan Additional Description Location Lot NW 6 11 7 4 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation Latitude 49.884008 Longitude -110.954282 2550.00 ft ft from How Location Obtained How Elevation Obtained ft from Not Verified Estimated **Drilling Information** Type of Work Method of Drilling New Well Proposed Well Use Domestic Formation Log Measurement in Imperial Yield Test Summary Measurement in Imperial Recommended Pump Rate 0.00 igpm Water Depth from Lithology Description Water Removal Rate (igpm) Static Water Level (ft) ground level (ft) Bearing Test Date 10.00 Topsoil 1974/12/28 20.00 28.00 32.00 Brown Sandy Clay Well Completion Measurement in Imperial Total Depth Drilled Finished Well Depth Gray Hard Clay Start Date End Date 54.00 80.00 ft 1974/12/27 1974/12/28 68.00 Sandy Clay **Borehole** 80.00 Gravel Diameter (in) From (ft) To (ft) 0.00 0.00 80.00 Surface Casing (if applicable) Well Casing/Liner Steel Size OD : 4.50 in Size OD : 0.00 in 0.225 in 0.000 in Wall Thickness : Wall Thickness : 75.00 ft Bottom at : Top at : 0.00 ft Bottom at : 0.00 ft Perforations Diameter or Slot Length Hole or Slot To (ft) From (ft) Slot Width(in) (in) Interval(in) Perforated by Annular Seal Cement/Grout Placed from 0.00 ft to 0.00 ft Amount Other Seals Type At (ft) Screen Type Stainless Steel

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name SCHLAGL GAS & OIL Certification No 1

Size OD :

Attachment Attached To Casing

From (ft)

75.00

Top Fittings

Type Natural

Amount

Pack

4.50 in

To (ft)

80.00

Bottom Fittings

Grain Size

Copy of Well report provided to owner Date approval holder signed

Slot Size (in)

0.020

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Metric Export to Excel

203542

GoA Well Tag No. Drilling Company Well ID

GIC Well ID

GOWN ID		a	ccuracy. The inf	ormation or	n this report will be	retained in a p	oublic databas	se.		Date Report Rece	eived	
Well Ident	tification and L	ocation									Measure	ment in Imperia
<i>Owner Nan</i> SEITZ, LIN	ne DA M.		Address SEVEN PEI	RSONS		Town			Province	Country	/	Postal Code
Location	1/4 or LSD NW	SEC 6	<i>TWP</i> 11	RGE 7	W of MER 4	Lot	Block	Plan	Additio	nal Description		
Measured t	from Boundary c	f ft from ft from			GPS Coordir Latitude 4 How Location Not Verified	nates in Dec 19.884008 n Obtained	imal Degre Longi	es (NAD 83) itude110.9	54282	Elevation How Elevation C Estimated	2550.00 ft Obtained	
Additional	Information										Measure	ment in Imperia
Distance F Is Artesia	From Top of Cas	ing to Gro	und Level		in	I	's Flow Con	trol Installed				
	Rate		igpm					Describe				
Recomme Recomme	nded Pump Rat	e ke Depth (From TOC)		0.00 igpm 0.00 ft	Pump Type	o Installed _ e		Make	Depth	ft H.P.	
						-				Model (Output	Rating)	
Remedia Addition	al Action Taken nal Comments of REPORTS HARE	n Well D WATER	G	as	Dept	,	ft Sample Co	Geo Geo	physical Log Submitted to	g Taken o ESRD Su	bmitted to ES	RD
Yield Test	1							Tak	en From C	Ground Level	Measure	ment in Imperia
Test Date 1974/12/2	8	Start Tim 12:00 AM	e 1	Stati	<i>ic Water Level</i> 28.00 ft		Pun	nping (ft)	E	Elapsed Time Minutes:Sec	Reco	very (ft)
Method of F Depth Wit	f Water Remove Type E Removal Rate thdrawn From moval period wa	al Bailer 2 2 s < 2 hour	20.00 igpm 0.00 ft s, explain wh	y								
Water Div	verted for Drillin	ng										
Water Soul	rce			Am	iount Taken ig	g			Diversio	on Date & Time		

Contractor Certification		
Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER	Certification No 1	
Company Name SCHLAGL GAS & OIL	Copy of Well report provided to owner	Date approval holder signed

L

Requirements	-
ğ	
ij	
I	
q	
S	
.	
2	
÷	

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

DISTANCE OF ANY MANURE STORAGE FACILITY (EXISTING OR PROPOSED) TO NEIGHBOURING RESIDENCES

NRCB USE ONLY

	Neighbour name(s)	Legal land description	Distance (m)	Zoning (LUB) category	MDS category (1-4)	Distance (m)	Waiver attached (if required)	Meets regulations
1	Jarcy English	SE 12-11-8W4	768					
2	(eith, Amanda Traxel	NW 6-11-7W4	567					
4 E	3ob Richardson	E 1/2 SW 7-11-7W4	482					
4 1	-J Lovell	E 1/2 SW 7-11-7W4	392					
Э	Srian Scholten	SW 6-11-7W4	895					

LAND BASE FOR MANURE AND COMPOST APPLICATION (complete only if an increase in livestock or manure production will occur)

				NRCB USE	E ONLY
Name of land owner(s)*	Legal land description	Usable area** (ha)	Soil zone ***	Usable area (ha)	Agreement attached (if required)
Kody Traxel. Owner	NE 6-11-7W4	52	Irrigated		
Kody Traxel. Owner	NE 1-11-8W4	28	Irrigated		
Kody Traxel. Owner	SW 7-11-7W4	23	Irrigated		
			Total		

^{4bbillot} * If you are **not** the registered landowner, you must attach copies of land use agreements signed by all landowners. ** Available manure spreading area (excluding setback areas from residences, common bodies of water, water wells, etc. as identified in Agdex 096-5 <u>Manure Spreading</u> Regulations) *** Brown, dark brown, black, grey wooded, or irrigated **Additional information (attach any additional information as required)** 6 Attached with Figure 2 document: Catch Basin Sizes and Run off areas. An Comment: Numbers next to list of neidabours correspond with numbers on map on next page.

0			
×			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
No. 101		S S S	
Sec. 2	0.00		
-	 (and the second second	-
ADAT	the lite		ų
	BRINK P		
LEAR ASSO			
Real Property of	200		
Ry and the	241		
A Star 2	100 100		
A GARLAN	ELT MAN	1- 11 A	
Contra Contra			
and and	1 Ale el	MA 1	
1. 1 B	and the	60	
and a summer		2 MIL	
	2	The second	
1	W/		
	CONTRACTO		
		AT AT	
- <u></u>	No.		
1	ALC: NO	and the	
Margare .	La Contraction	h l	1
7	N 1997	-	
		4	2
		4	4
			1
200	A ban		
1/100	1	1	ľ
	States and states		
			A STATE OF
		5-0	
			A STATE OF
			A NEW YORK

Layer

Votification radius	
1 mile	
ADS Category for residences on land zone. Agricultural Purposes	
. Non-Agricultural Purposes	
ADS: 505 m (1657 ft) ADS with expansion factor*: 389 m (1276 f	ť
. High Use Recreational or Commercial Purj	poses
ADS: 631 m (2071 ft) ADS with expansion factor*: 486 m (1595 f	ť)
. Large Scale Country Residential, Rural, Ha	mlet, Village, Town or City
ADS: 1010 m (3314 ft) ADS with expansion factor*: 778 m (2552 f	t)
The expansion factor can only be use ince the completion of the most recen	d if 3 or more years have passed tt construction arising out of an
NOPA permit	
and Base Required - Soil Type	Area
Irrigated (ha)	72.0 hectares (177.9 acres)

Kody Traxel Proposed CFO Figure 1

MDS Seperation.

Kody Traxel Proposed CFO Figure 2

Manure Application Lands Map 250+ Acres owned by Kody Traxel

ody Traxel

MDS Spreadsheet based on 2006 AOPA Regulations

Category of	Type of Livestock	Factor A	Technology	MU	LSU	Number of	LSU
Livestock	21		Factor		Factor	Animals	
Feedlot	Beef Cows/Finishers (900+ lbs)	0 700	0 700	0.010	0 4450		
Animale	Beef Feeders (450 - 900 lbs)	0.700	0.700	0.510	0.4450	1 800	441.0
Ammais	Beef Feeder Calves (<550 lbs)	0.700	0.700	0.300	0.2430	1,000	441.0
	Horses - PMI I	0.700	0.700	1 000	0.4550		
	Horses - Feeders > 750 lbs	0.050	0.700	1.000	0.4550		
	Horses - Foals < 750 lbs	0.050	0.700	0.300	0.4355		
	Mules	0.000	0.700	1 000	0.4200		-
	Donkeys	0.000	0.700	0.670	0.4200		
	Bison	0.600	0.700	1 000	0.4200		
	Other	0.000	0.100	1.000	0.1200		-
Dairv		0.800	1,100	2.000	1,7600		-
,	Free Stall – Lactating Cows with all						
(*count	associated dries, heifers, and calves*						
lactating	Free Stall – Lactating Cows with Dry	0.800	1.100	1.640	1.4432		-
cows only)	Cows only*						
,,,	Free Stall – Lactating Cows only	0.800	1.100	1.400	1.2320		-
	Tie Stall – Lactating Cows only	0.800	1.000	1.400	1.1200		-
	5 - 5	0.800	1.000	1.400	1.1200		-
	Loose Housing – Lactating Cows only						
	Dry Cow	0.800	0.700	1.000	0.5600		-
	5 -						
	Replacements – Bred Heifers	0.800	0.700	0.875	0.4900		-
	(Breeding to Calving)						
	Replacements - Growing Heifers	0.800	0.700	0.525	0.2940		-
	(350 lbs to breeding)						
	Calves (< 350 lbs)	0.800	0.700	0.200	0.1120		-
	Other						-
Swine	Farrow to finish *	2.000	1,100	1.780	3,9160		-
Liquid	Farrow to wean *	2.000	1.100	0.670	1.4740		-
(*count	Farrow only *	2.000	1,100	0.530	1,1660		-
sows only)	Feeders/Boars	2.000	1.100	0.200	0.4400		-
,,,	Growers/Roasters	2.000	1.100	0.118	0.2600		-
	Weaners	2.000	1.100	0.055	0.1210		-
	Other						-
Swine	Farrow to finish *	2.000	0.800	1.780	2.8480		-
Solid	Farrow to wean *	2.000	0.800	0.670	1.0720		-
(*Count	Farrow only *	2.000	0.800	0.530	0.8480		-
sows only)	Feeders/Boars	2.000	0.800	0.200	0.3200		-
	Growers/Roasters	2.000	0.800	0.118	0.1888		-
	Weaners	2.000	0.800	0.055	0.0880		-
	Other						-
Poultry	Chicken - Breeders - Solid	1.000	0.700	0.010	0.0070		-
	Chicken - Layers - Liquid (includes	2.000	1.100	0.008	0.0176		-
	associated pullets)						
	Chicken - Layers - (Belt Cage)	2.000	0.700	0.008	0.0112		-
	Chicken - Layers - (Deep Pit)	2.000	0.700	0.008	0.0112		-
	Chicken - Pullets/Broilers	1.000	0.700	0.002	0.0014		-
	Turkey - Toms/Breeders	1.000	0.700	0.020	0.0140		-
	Turkey - Hens (light)	1.000	0.700	0.013	0.0091		-
	Turkey - Broilers	1.000	0.700	0.010	0.0070		-
	Ducks	1.000	0.700	0.010	0.0070		-
	Geese	1.000	0.700	0.020	0.0140		-
	Other						-
Sheep and	Sheep - Ewes/Rams	0.600	0.700	0.200	0.0840		
Goats	Sheep - Ewes with lambs	0.600	0.700	0.250	0.1050		-
	Sheep - Lambs	0.600	0.700	0.050	0.0210		-
	Sheep - Feeders	0.600	0.700	0.100	0.0420		-
	Goats - Meat/Milk (per Ewe)	0.700	0.700	0.170	0.0833		-
	Goats - Nannies/Billies	0.700	0.700	0.140	0.0686		-
	Goats - Feeders	0.700	0.700	0.077	0.0377		-
	Other						-
Cervid	Elk	0.600	0.700	0.600	0.2520		-
	Deer	0.600	0.700	0.200	0.0840		-
	Other						-
Wild Boar	Feeders	2.000	0.800	0.140	0.2240		-
	Sow (farrowing)	2.000	0.800	0.371	0.5936		-
	Other						- 1

For New Operations Dispersion Factor

1

Total

441.0

		Dist	ance
Category	Odour Objective	Feet	Metres
1	41.04	1,243	379
2	54.72	1,657	505
3	68.4	2,071	631
4	109.44	3,314	1,010

For Expanding Operations Dispersion Factor Expansion Factor

1
0.77

		Distance	
Category	Odour Objective	Feet	Metres
1	41.04	957	292
2	54.72	1,276	389
3	68.40	1,595	486
4	109.44	2,552	778

Name	Kody Traxel	
Address		0
Legal Land		
Location		0

Landbase Requirements (hectares) based on 2006 AOPA requirements

Category of	Type of Livestock	Number of	Dark Brown	Grey	Black	Irrigated
Livestock		Animals	& Brown	Wooded	(ha)	(ha)
			(ha)	(ha)		
Feedlot	Cows/Finishers (900+ lbs)	0.0	0.0	0.0	0.0	0.0
Animals	Feeders (450 - 900 lbs)	1800.0	144.0	120.6	90.0	72.0
	Feeder Calves (<550 lbs)	0.0	0.0	0.0	0.0	0.0
	Horses - PMU	0.0	0.0	0.0	0.0	0.0
	Horses - Feeders > 750 lbs	0.0	0.0	0.0	0.0	0.0
	Mulee	0.0	0.0	0.0	0.0	0.0
	Donkeys	0.0	0.0	0.0	0.0	0.0
	Bison	0.0	0.0	0.0	0.0	0.0
	Other	0.0				
Dairy		0.0	0.0	0.0	0.0	0.0
	Free Stall – Lactating Cows with all					
(*count	associated dries, heifers, and calves*					
lactating	Free Stall – Lactating Cows with Dry	0.0	0.0	0.0	0.0	0.0
cows only)	Cows only *					
	Free Stall – Lactating Cows only*	0.0	0.0	0.0	0.0	0.0
	The Stall – Lactating Cows only	0.0	0.0	0.0	0.0	0.0
	Loose Housing – Lactating Cows only	0.0	0.0	0.0	0.0	0.0
	Dry Cow (Solid manure)	0.0	0.0	0.0	0.0	0.0
	Dry Cow (Liquid manure)	0.0	0.0	0.0	0.0	0.0
	Replacements – Bred Heifers	0.0	0.0	0.0	0.0	0.0
	(Breeding to Calving)					
	Replacements - Growing Heifers	0.0	0.0	0.0	0.0	0.0
	(350 lbs to breeding)					
	Calves (< 350 lbs)	0.0	0.0	0.0	0.0	0.0
	Other	0.0				
Swine	Farrow to finish *	0.0	0.0	0.0	0.0	0.0
Liquid	Farrow to wean ^	0.0	0.0	0.0	0.0	0.0
("count	Farrow only "	0.0	0.0	0.0	0.0	0.0
sows only)	Growers/Boasters	0.0	0.0	0.0	0.0	0.0
	Weapers	0.0	0.0	0.0	0.0	0.0
	Other	0.0	0.0	0.0	0.0	0.0
Swine	Farrow to finish *	0.0	0.0	0.0	0.0	0.0
Solid	Farrow to wean *	0.0	0.0	0.0	0.0	0.0
(*Count	Farrow only *	0.0	0.0	0.0	0.0	0.0
sows only)	Feeders/Boars	0.0	0.0	0.0	0.0	0.0
	Growers/Roasters	0.0	0.0	0.0	0.0	0.0
	Weaners	0.0	0.0	0.0	0.0	0.0
		0.0				
Poultry	Chicken - Breeders - Solid	0.0	0.0	0.0	0.0	0.0
	Chicken - Layers - Liquid (Includes	0.0	0.0	0.0	0.0	0.0
	Chicken - Lavers - (Belt Cage)	0.0	0.0	0.0	0.0	0.0
	Chicken - Lavers - (Deep Pit)	0.0	0.0	0.0	0.0	0.0
	Chicken - Pullets/Broilers	0.0	0.0	0.0	0.0	0.0
	Turkey - Toms/Breeders	0.0	0.0	0.0	0.0	0.0
	Turkey - Hens (light)	0.0	0.0	0.0	0.0	0.0
	Turkey - Broilers	0.0	0.0	0.0	0.0	0.0
	Ducks	0.0	0.0	0.0	0.0	0.0
	Geese	0.0	0.0	0.0	0.0	0.0
	Other	0.0				
Goats and	Sheep - Ewes/Rams	0.0	0.0	0.0	0.0	0.0
Sheep	Sheep - Ewes with lambs	0.0	0.0	0.0	0.0	0.0
	Sheep - Lambs	0.0	0.0	0.0	0.0	0.0
	Sheep - Feeders	0.0	0.0	0.0	0.0	0.0
	Goats - Nappies/Billies	0.0	0.0	0.0	0.0	0.0
	Goats - Feeders	0.0	0.0	0.0	0.0	0.0
	Other	0.0	0.0	0.0	0.0	0.0
Cervid	Elk	0.0	0.0	0.0	0.0	0.0
	Deer	0.0	0.0	0.0	0.0	0.0
	Other	0.0				
Wild Boar	Feeders	0.0	0.0	0.0	0.0	0.0
	Sow (farrowing)	0.0	0.0	0.0	0.0	0.0
	Other	0.0				
	* • • • • •					
	I otal Hectares		144	120.6	90.0	72.0
	Total Acros		250	000 0	000 4	477.0
	I Utal AURS		300	298.0	222.4	177.9

Part 2 — Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

SOLID MANURE, COMPOST, & COMPOSTING MATERIALS: Barns, feedlots, & storage facilities -Naturally occurring protective layer

(complete a copy of this section for **EACH** barn, feedlot, and storage facility for solid manure, composting materials, or compost with a naturally occurring protective layer for the liner)

Facility description / name (as indicated on site plan)

1. East Run Area KT 10-25

2. __

Manure storage capacity

	Length (m)	Width (m)	Depth below ground level (m)	NRCB USE ONLY Estimated storage capacity (m ³)
1.	Odd Shaped	Total Run area	of 13,555.51m2	
2.				
			TOTAL CAPACITY	

I plan to use a short-term solid manure storage (STMS) as part of my manure storage and handling plan for this CFO. (The AOPA requirements for STMS are set out in the NRCB <u>Short-Term Solid Manure Storage Requirements Fact Sheet</u>.

Surface water control systems

Describe the run-on and runoff control system Run off control into catch basin

Thickness of naturally		Provide de Attached	etails (as required) Report		
occurring protective layer	(m)				
Soil texture	% sand		% silt		% clay
Hydraulic conductivity - naturally occurring protective layer	Depth and type of soil tested 3	Hydraulic 3.8 x 10-7	conductivity (cm/s)	Describe tes Attached Re	t standard used eport
Additional information (attach copies of soil test reports)	NF	CB USE ONLY		
			Requirer	nents met:	
			Condition	n required:	🗆 YES 🗌 NO
			Report a	ttached:	🗆 YES 🗌 NO

Part 2 — Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

SOLID MANURE, COMPOST, & COMPOSTING MATERIALS: Barns, feedlots, & storage facilities -Naturally occurring protective layer

(complete a copy of this section for **EACH** barn, feedlot, and storage facility for solid manure, composting materials, or compost with a naturally occurring protective layer for the liner)

Facility description / name (as indicated on site plan)

1. West Run Area KT 9-25 KT 12-25

2.

Manure storage capacity

	Length (m)	Width (m)	Depth below ground level (m)	NRCB USE ONLY Estimated storage capacity (m ³)
1.	Odd Shaped	Total Run area	of 19654.11m2	
2.				
			TOTAL CAPACITY	

I plan to use a short-term solid manure storage (STMS) as part of my manure storage and handling plan for this CFO. (The AOPA requirements for STMS are set out in the NRCB <u>Short-Term Solid Manure Storage Requirements Fact Sheet</u>.

Surface water control systems

Describe the run-on and runoff control system Run off control into catch basin

		Provid	e details (as requir	ed)			
Thickness of naturally		Attach	ed Report				
occurring protective layer							
	(m)						
Soil texture	45		30			25	
	% sand			_% silt	-	25	_% clay
Hydraulic conductivity	Depth and type of soil tested	Hydra	ulic conductivity (cr	m/s)	Describe test	standard u	sed
- naturally occurring protective layer	3	3.0 x ²	10-7 / 3.5 X 10-7		Attached Re	port	
Additional information (a	attach copies of soil test reports)		NRCB USE ONLY			_	_
				Requiren	nents met:	∐ YES	L NO
				Conditior	n required:	Sec. 20	🗆 NO
				Report a	ttached:	☐ YES	🗆 NO

Part 2 – Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

RUNOFF CONTROL CATCH BASIN: Naturally occurring protective layer (complete a copy of this section for **EACH proposed** runoff control catch basin with a naturally occurring protective layer)

Facility description / name (as indicated on site plan)

1. Catch Basin EAST KT 6-25
2
3

Determination of runoff area

Provide a plan and show how you calculated the area contributing to runoff for each catch basin

I calculated the area using provided calculator. This calculates the area and regions Rainfall as per AOPA "Medicine Hat" of 85MM. This calculator designed the size of catch basin. I rounded up the area as well for more capacity than less.

Catch basin capacity

				Danth halaw	S	Slope run:ris	e	NRCB USE ONLY
	Length (m)	Width (m)	Total depth (m)	ground level (m)	Inside end walls	Inside side walls	Outside walls	Calculated storage capacity (excl. 0.5 m freeboard) (m ³)
1.	34	22	2.7	2.7	3	3	-	
2.								
3.								
	•	•	•	•	•	TOTAL	CAPACITY	

Thickness of naturally occurring protective layer	94M(m)	Provide details (as required) See Report attached	
Soil texture	47% sand	% silt	% clay
	Depth and type of soil tested	Hydraulic conductivity (cm/s)	Describe test standard used
Hydraulic conductivity - naturally occurring protective layer	7.5	6.6 X-8 CM /S	See Report attached
Catch Basin – Design and mana	gement requirements can be found in	NRCB USE ONLY	
Technical Guidenne Aguex 090	-101	Require	ements met: 🛛 YES 🗌 NO
Tf soil info differe new facility in		Conditi	on required: 🛛 YES 🗌 NO
IT SOIL INTO DIFFERS PER FACILITY IN	ciude additional solis page.	Report	attached: YES NO

Kody Traxel Proposed CFO Figure 2

Catch Basin Size – Total Run Off Area (East)

Kody Traxel Proposed CFO Figure 2

Catch Basin Size – New (East)

Catch Basin Stor	<u>age Volume</u>	Calculator					
Construction Dimensions of C	Catch Basin		CFO Name 1		Traxel		
* Only cells in blue can be changed.			Land Location	11			
Overall Dimensions of Catch Bas	sin	Catch Basin Dimensions					
Total Length*4	34.0 m	112 ft					
Total Width*4	22.0 m	72 ft	Pave	ed Runoff Cat	tchment Area	a(s)	_
Total Depth*4	2.7 m	9 ft	Area ₂	Length (m)	Width (m)	Area (m²)	
Design Capacity Depth	2.20 m	7 ft	-			0.0	
End Slope*4	3 run:rise	3 run:rise	2			0.0	_
Side Slope*4	3 run:rise	3 run:rise	m			0.0	_
Length of Bottom	17.8 m	58 ft	4			0.0	_
Width of Bottom	5.8 m	19 ft	5			0.0	
				Tot	al Area (m²)	0	_
		Connection (Second					
Capacity @ top of Bank	1,031 m ³	36,412 ft ³	Unpav	ved Runoff C	atchment Are	ea(s)	_
		226,805 Imp. Gal.	Area ₂	Length (m)	Width (m)	Area (m²)	
			9	136	100	13,600.0	
			7		0	0.0	_
Design Canacity of Catch Basin	(freehoard level)	Design Capacity	8		0	0.0	_
cesign capacity of carcil pasin		(freeboard level)	6			0.0	_
			10			0.0	
Length (design capacity depth)	31.0 m	102 ft		Tot	al Area (m²)	13,600	
Width (design capacity depth)	19.0 m	62 ft					
Total Depth	2.7 m	9 ft					
Design Capacity Depth	2.20 m	7 ft	Rainfall (Sele	ct Town 3)			
End Slope	3 run:rise	3 run:rise	Medicine Hat	85			
Side Slope	3 run:rise	3 run:rise	AOPA Des	sign Rainfall	85	mm	
Design Capacity (freeboard level)	698 m ³	24,635 ft ³	Minimum Ca	tchbasin St	orage Volui	me Required	_
		153,445 Imp. Gal.	694 1	m ³ **	24494.2528	fl ³	
level)	$589 m^2$	6,340 ft ²			152570.61	Imp. Gal.	

Part 2 — Technical Requirements

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

RUNOFF CONTROL CATCH BASIN: Naturally occurring protective layer (complete a copy of this section for EACH proposed runoff control catch basin with a naturally occurring protective layer)

Facility description / name (as indicated on site plan)

1. Catch Basin West KT 4-24
2
3

Determination of runoff area

Provide a plan and show how you calculated the area contributing to runoff for each catch basin

I calculated the area using provided calculator. This calculates the area and regions Rainfall as per AOPA "Medicine Hat" of 85MM. This calculator designed the size of catch basin. I rounded up the area as well for more capacity than less.

Catch basin capacity

				Danth halaw	S	Slope run:ris	e	NRCB USE ONLY
	Length (m)	Width (m)	Total depth (m)	ground level (m)	Inside end walls	Inside side walls	Outside walls	Calculated storage capacity (excl. 0.5 m freeboard) (m ³)
1.	82	15.8	2.5	2.5	3	3	-	
2.								
3.								
	•	•		•		TOTAL	CAPACITY	

Thickness of naturally occurring protective layer	100+(m)	Provide details (as required) See Report attached	
Soil texture	46% sand	% silt	26% clay
	Depth and type of soil tested	Hydraulic conductivity (cm/s)	Describe test standard used
Hydraulic conductivity - naturally occurring protective layer	7.5	2.7X-8 CM /S	See Report attached
Catch Basin – Design and mana	gement requirements can be found in	NRCB USE ONLY	
reclinical Guideline Agues 090	101	Require	ements met: 🛛 YES 🗌 NO
If coil info difforc nor facility in	clude additional colle page	Conditi	on required: 🛛 YES 🗌 NO
if son into differs per facility in	ciude additional sons page.	Report	attached: 🗌 YES 🗌 NO

Kody Traxel Proposed CFO Figure 2

Catch Basin Size – Total Area Run Off (West)

Kody Traxel Proposed CFO Figure 2

Catch Basin Size – Existing Increased (West)

Construction Dimensions of	Catch Basin		CFO Name 1		Traxel		Construction Dimensions	of Catch Basin	
* Only cells in blue can be changed	ī		Land Locatio	h 1			* Only cells in blue can be cha	iged.	
Overall Dimensions of Catch B	asin	Catch Basin Dimensions					Overall Dimensions of Cato	n Basin	Catch Basin Dimensions
Total Length*4	82.0 m	269 ft					Total Lenoth*	82.0 m	269 ft
Total Width*4	15.5 m	51 ft	Pav	ed Runoff Catu	chment Area((s)	Total Width*4	15.8 m	52 ft
Total Depth*4	1.5 m	5 ft	Area 2	Length (m)	Width (m)	Area (m ²)	Total Depth*	2.5 m	41
Design Capacity Depth	1.00 m	3.ft	1			0.0	Design Capacity Depth	2.00 m	4
End Slope*4	3 run:rise	3 run:rise	2			0.0	End Slope*	3 run:rise	3 run:ri
Side Slope*4	3 run:rise	3 run:rise	3			0.0	Side Slope*4	3 run:rise	3 run:ri
Length of Bottom	73.0 m	240 ft	4			0.0	Length of Bottom	67.0 m	220 ft
Width of Bottom	6.5 m	21 ft	5			0.0	Width of Bottom	0.8 m	38
				Tota	I Area (m ²)	0			
		Capacity (@tob)							Canacity (@tob)
Capacity @ top of Bank	1,289 m ³	45,516 #3	Unpa	ved Runoff Ca	tchment Area	a(s)	Canactiv @ top of Bank	1 593 m ²	56 247 ft ²
		283,513 Imp. Gal.	Area 2	Length (m)	Width (m)	Area (m ²)			350 355 Imm 5
			9	133	100	13,342.0			
			2		0	0.0			
Decide Canacity of Catch Bacit	n (freehoard level)	Design Capacity	80		0	0.0		N 11 1 27 .	Design Capacit
interimente la Guandata una	(management) .	(freeboard level)	6			0.0	Design capacity of catch E	asin (irreeboard level)	(freeboard leve
			10			0.0	4 7.		
Length (design capacity depth)	79.0 m	259 ft		Tota	I Area (m ²)	13,342	Length (design capacity depth)	T9.0 m	259 ft
Width (design capacity depth)	12.5 m	41 ft					Width (design capacity depth)	12.8 m	42 ft
Total Depth	1.5 m	5 ft					Total Depth	2.5 m	8
Design Capacity Depth	1.00 m	3 ft	Rainfall (Sele	ect Town 3)			Design Capacity Depth	2.00 m	7 ft
End Slope	3 run:rise	3 run:rise	Medicine Hat	85			End Slope	3 run:rise	3 run ii
Side Slope	3 run:rise	3 run:rise	AOPA De	sign Rainfall	85 IT	ų	Side Slope	3 run:rise	3 run:n
Design Capacity (freeboard level)	725 m ³	25,603 ft ³	Minimum C	atchbasin Sto	orage Volum	e Required	Design Capacity (freeboard lev	el) 1.017 m ³	35.908 ft ³
×		159,478 Imp. Gal.	680	m ³ **	24029.5825 ft				223,665 lmp.
level)	200 m ²	*0.000 ft ²			1 10676 256 In	nn Gal	Taxa 1		

Unpaved Runoff Catchment Area(s)

Length (

Area 2

otal Area (m²)

Area (m

Width (m)

Length (m)

Area 2

Paved Runoff Catchment Area(s)

CFO Name 1 Land Location 1

Current Facilities: Catch Basin NW6-11-7w4

Proposed Facilities: Catch Basin Increased Size NE 6-11-7w4

Minimum Catchbasin Storage Volume Required

35,908 ft³ 223,665 lmp. Gal.

85 mm

AOPA Design Rainfall

Rainfall (Select Town

259 ft 42 ft 7 ft 3 run:rise 3 run:rise

18 April 2024

J Lobbezoo Engineering & Consulting Services Ltd. Box 96, Monarch, AB TOL 1M0

JLECS File: P24006

Kody Traxel 7515 TWP 111 Cypress County, Alberta T0K 1Z0

Attention: Kody Traxel

Re: Geotechnical Review and Evaluation NRCB Permitting of Proposed Feedlot Pens and Catch Basin NW-06-011-07-W4M, near Seven Persons, Alberta

As requested, J Lobbezoo Engineering & Consulting Services Ltd. (JLECS) has carried out a geotechnical review and evaluation of the above-captioned site relative to the required protection of the groundwater resource, as required by the Agricultural Operation Practices Act, AB Reg. 267/2001 (hereinafter referred to as "AOPA"). This letter describes site soil conditions to support a permit application related to proposed feedlot pens and a catch basin to be located in the northeast corner area of NW-06-011-07-W4M (refer to Figure 1, attached).

In order to demonstrate the suitability of the naturally existing soils for consideration as a naturally occurring protective layer to the groundwater, five boreholes were advanced at the site on March 5, 2024. The boreholes were advanced at the approximate locations denoted as KT1-24 to KT5-24 on Figure 1, attached.

The boreholes were advanced by a truck-mounted drill rig owned and operated by Chilako Drilling Services and extended to depths ranging between 3.0 m and 9.2 m below existing grades. The boreholes were logged by Larry Delong of Chilako Drilling Services.

In general, the natural mineral soils encountered within the boreholes consisted of a thin layer of topsoil underlain by stiff medium plastic clay till to the termination depth of the boreholes. No evidence of free groundwater or a groundwater resource (as defined by the AOPA) was identified within the 9.2 m investigation depth at the proposed lagoon site.

Samples of soil collected from the screened zone of boreholes KT1-24 to KT5-24 were subjected to textural analyses, which was carried out by Down to Earth Laboratories in Lethbridge, Alberta. The results indicate a textural breakdown of:

Borehole/Depth	% Sand	% Silt	% Clay
KT1-24 / 1.5-3.0m	43	28	30
KT2-24 / 1.5-3.0m	34	36	30
KT3-24 / 2.3-3.0m	26	34	40
KT4-24 / 6.5-7.5m	46	28	26
KT4-24 / 6.5-7.5m	44	29	27

Table 1: Soil Textural Analyses

Kody Traxel Geotechnical Review & Evaluation, NW-06-011-07-W4M, near Seven Persons, Alberta 18 April 2024 Page 2

To measure the *in situ* permeability of the subsurface soils, a 50 mm diameter PVC monitoring well was constructed in boreholes KT3-24 (pen area) and KT4 (catch basin area). Test Well KT3-24 was screened from 2.2 m to 3.8 m depth, while Test Well KT4-24 was screened from 4.4 m to 7.5 m depth. Well saturation of the 50 mm diameter monitoring wells was carried out by filling the monitoring well to the top for several consecutive days. After several days of testing, a 24-hour water drop of 0.43 m was determined at KT3-24, and a 24-hour water drop of 0.66 m was determined at KT4-24.

To calculate the permeability of the screened portion of the clay till strata at the test well locations, a modified falling head test (as outlined in the USBR Engineering Geology Field Manual Volume 2 [2001]) was used. The input variables and output data are outlined on the attached In Situ Permeability Test report. The results of the permeability testing indicate an *in situ* hydraulic conductivity, k_s , of 5.5×10^{-8} cm/s at KT3-24, and an *in situ* hydraulic conductivity, k_s , of 2.7×10^{-8} cm/s at KT4-24.

Using the measured permeability of the clay stratum, the 1.6 m of clay screened at KT3-24 is estimated to represent the equivalent of approximately 29 m of naturally occurring materials having a hydraulic conductivity of 1×10^{-6} cm/s (the reference standard in AOPA), while the 3.1 m of clay screened at KT3-24 is estimated to represent the equivalent of over 100 m of naturally occurring materials having a hydraulic conductivity of 1×10^{-6} cm/s. This represents natural material protection in excess of the minimum requirements outlined by the AOPA for solid manure storage (minimum 2 m, Section 9.5-c), and catch basins (minimum 5 m, Section 9.5-b).

Conclusion

Based on the results of the current investigation, permeability testing, and our understanding of the site and proposed development at the site, it is JLECS's opinion that the naturally occurring materials at the site satisfy the AOPA requirements for permitting the proposed solid manure storage lagoon and catch basin at this location.

We trust that this report satisfies your present requirements. Should you have any questions, please contact the undersigned at your convenience.

Yours truly,

J Lobbezoo Engineering & Consulting Services Ltd.

Principal Geotechnical Engineer

Attachments Figure 1 Borehole Locations In Situ Permeability Test Calculations Soil Profile and Parent Material Description, Chilako Drilling Services

J LOBBEZOO CONSULTING	D PRACTICE ENGINEERING & SERVICES LTD.
RM SIGNATURE:	Munitor India
RM APEGA ID #:	18 Apri 12024
PERMIT NUN The Association of Pr Geoscientists	BER: P016456 ofessional Engineers and of Alberta (APEGA)

KT3-24

In Situ Permeability Test

Modified Falling Head Permeability Equation

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[\frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[\frac{2H_{1}-\ell}{2H_{2}-\ell} \right] - \ln \left[\frac{2H_{1}H_{2}-\ell}{2H_{1}H_{2}-\ell} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

KT3-24 - Kody Traxel JLECS File: P24006

Terms D De L h1 h2	Value 0.0520 0.1500 1.60 4.20 3.77	Definition diameter of standpipe (m) diameter of borehole (m) length of sand section (m) initial height of water above base of hole (m) final height of water above base of hole (m)
h2 t	3.77 24.0	final height of water above base of hole (m) time of test (h)
	Terms D De L h1 h2 t	Terms Value D 0.0520 De 0.1500 L 1.60 h1 4.20 h2 3.77 t 24.0

Ž

k_s = 5.5E-08 cm/sec

KT4-24

In Situ Permeability Test

Provence of

Modified Falling Head Permeability Equation

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[\frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[\frac{2H_{1}-\ell}{2H_{2}-\ell} \right] - \ln \left[\frac{2H_{1}H_{2}-\ell}{2H_{1}H_{2}-\ell} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

KT4-24 - Kody Traxel JLECS File: P24006

ES	Terms	Value	Definition
8	D	0.0520	diameter of standpipe (m)
SIA	De	0.1500	diameter of borehole (m)
AF	L	3.10	length of sand section (m)
2	h1	8.10	initial height of water above base of hole (m)
5	h2	7.44	final height of water above base of hole (m)
INF	t	24.0	time of test (h)

k_s = 2.7E-08 cm/sec

CHILAKO DRILLING SERVICES LTD

Box 942 Coaldale, Alberta, T1M 1M8 (403) 345-3710

SOIL PROFILE AND PARENT MATERIAL DESCRIPTION

Site Location: NW6-11-7W4, Kody Traxel Date: 05-Mar-24 Moisture Hole # Location Depth Texture Geological Sample Remarks KT1-24 0503644 0-0.15 CL F Topsoil 5525978 0.15-0.8 CL Μ Till Stiff, med plastic, brown, sand streaks 0.8-3.0 CL Till 1.5-3.0 Μ KT2-24 0503629 0-0.15 CL F Topsoil 5526059 0.15-3.0 CL Till 1.5-3.0 Stiff, med plastic, brown, sand streaks Μ KT3-24 0503654 0-0.15 CL F Topsoil 5526019 0.15-2.1 CL Till Stiff, med plastic, brown, sand streaks Μ 2.1-3.8 CL Μ Till 2.3-3.0 Stiff, med plastic, brown 50mm H.C. Well installed to 3.8m BGS Screen: 3.8-2.3m Sand: 3.8-2.2m Bentonite: 2.2-0.0m Stickup: 0.4m Hole Diameter: 0.15m KT4-24 0503615 0-0.15 CL F Topsoil 5526142 0.15-3.8 Till CL Μ Stiff, med plastic, brown 3.8-7.5 CL-C Μ Till 6.5-7.5 Stiff, med plastic, brown, iron staining 50mm H.C. Well installed to 7.5m BGS Screen: 7.5-4.5m Sand: 7.5-4.4m Bentonote: 4.4-0.0m Stickup: 0.6m Hole Diameter: 0.15m KT5-24 0503658 0-0.15 CL F Topsoil 0.15-2.4 5526121 CL Μ Till Stiff, med plastic 2.4-2.5 Till Sand lensing CL Μ 2.5-9.2 Till Stiff, med plastic, brown, iron staining CL-C Μ 6.5-7.5

Legend: L

L Loam C Clay S Sand Gr. Gravel Si Silt F Fine (sand) VF Very Fine (sand)

Eg. VFSCL = Very Fine Sandy Clay Loam

20 March 2025

J Lobbezoo Engineering & Consulting Services Ltd. Box 96, Monarch, AB TOL 1M0

JLECS File: P24006

Kody Traxel 7515 TWP 111 Cypress County, Alberta T0K 1Z0

Attention: Kody Traxel

Re: Geotechnical Review and Evaluation NRCB Permitting of Proposed Feedlot Pens and Catch Basin NE-06-011-07-W4M, near Seven Persons, Alberta

As requested, J Lobbezoo Engineering & Consulting Services Ltd. (JLECS) has carried out a geotechnical review and evaluation of the above-captioned site relative to the required protection of the groundwater resource, as required by the Agricultural Operation Practices Act, AB Reg. 267/2001 (hereinafter referred to as "AOPA"). This letter describes site soil conditions to support a permit application related to proposed feedlot pens and a catch basin to be located in the northwest corner area of NE-06-011-07-W4M (refer to Figure 1, attached).

In order to demonstrate the suitability of the naturally existing soils for consideration as a naturally occurring protective layer to the groundwater, ten boreholes were advanced at the site on February 24, 2025. The boreholes were advanced at the approximate locations denoted as TK1-25 and TK2-25, and TK5-25 to TK12-25 on Figure 1, attached.

The boreholes were advanced by a truck-mounted drill rig owned and operated by Chilako Drilling Services and extended to depths ranging between 3.0 m and 9.4 m below existing grades. The boreholes were logged by Larry Delong of Chilako Drilling Services.

In general, the natural mineral soils encountered within the boreholes consisted of stiff medium plastic clay till to the termination depth of the boreholes. No free groundwater or evidence of a groundwater resource (as defined by the AOPA) was identified within the 9.4 m investigation depth at the proposed pen and catch basin site.

Samples of soil collected from the screened zone of boreholes TK6-25, TK9-25, TK10-25 and TK12-25 as well as samples recovered from similar depths at the other boreholes were subjected to textural analyses, which was carried out by Down to Earth Laboratories in Lethbridge, Alberta. The results indicate a textural breakdown of:

Borehole/Depth	% Sand	% Silt	% Clay
TK1-25 / 6.5-7.5m	48	26	26
TK2-25 / 1.5-3.0m	46	32	22
TK5-25 / 6.5-7.5m	46	30	24
TK6-25 / 6.5-7.5m	47	29	24
TK7-25 / 6.5-7.5m	44	32	24
TK8-25 / 1.5-3.0m	45	30	25
TK9-25 / 1.5-3.0m	- 48	30	22
TK10-25 / 2.0-3.0m	48	28	24
TK11-25 / 2.0-3.0m	42	30	28
TK12-25 / 2.0-3.0m	37	37	26
Average:	45	30	25

Table 1: Soil Textural Analyses

To measure the *in situ* permeability of the subsurface soils, 50 mm diameter PVC monitoring wells were constructed in boreholes TK6-25 (proposed catch basin area), TK9-25 (pen area), TK10-25 (pen area) and TK12-25 (pen area). Test Well KT6-24 was screened from 6.0 m to 9.4 m depth, while the other test wells were screened from approximately 1.5 m to 1.4 m depth. Well saturation of the 50 mm diameter monitoring wells was carried out by filling the monitoring wells to the top for several consecutive days. After several days of testing, the following 24-hour water drops were recorded:

1.15 m drop at TK6-25; 1.50 m drop at TK9-25; 2.11 m drop at TK10-25; and 1.70 m drop at TK12-25.

To calculate the permeability of the screened portion of the clay strata at the test well locations, a modified falling head test (as outlined in the USBR Engineering Geology Field Manual Volume 2 [2001]) was used. The input variables and output data are outlined on the attached In Situ Permeability Test reports. The results of the permeability testing indicate the following *in situ* hydraulic conductivity (k_s) values:

 $k_s = 6.6 \times 10^{-8} \text{ cm/s}$ at KT6-25 (catch basin); $k_s = 3.5 \times 10^{-7} \text{ cm/s}$ at TK9-25 (southwest pen area); $k_s = 3.8 \times 10^{-7} \text{ cm/s}$ at TK10-25 (northeast pen area); and $k_s = 3.0 \times 10^{-7} \text{ cm/s}$ at TK12-25 (west pen area);

Using the measured permeability of the clay stratum, the 3.4 m of clay screened at TK6-25 is estimated to represent the equivalent of approximately 94 m of naturally occurring materials having a hydraulic conductivity of 1 x 10^{-6} cm/s (the reference standard in AOPA). This represents natural material protection in excess of the minimum requirements outlined by the AOPA for catch basins (minimum 5 m, Section 9.5-b).

The 1.2 m to 1.6 m clay screened at the other boreholes (proposed pen areas) represent the equivalent of 4.0 to 4.4 m of naturally occurring materials having a hydraulic conductivity of 1×10^{-6} cm/s. This represents natural material protection in excess of the minimum requirements outlined by the AOPA for solid manure storage (minimum 2 m, Section 9.5-c).

Kody Traxel Geotechnical Review & Evaluation, NE-06-011-07-W4M, near Seven Persons, Alberta 20 March 2025 Page 3

Conclusion

Based on the results of the current investigation, permeability testing, and our understanding of the site and proposed development at the site, it is JLECS's opinion that the naturally occurring materials at the site satisfy the AOPA requirements for permitting the proposed pens and catch basin at this location.

We trust that this report satisfies your present requirements. Should you have any questions, please contact the undersigned at your convenience.

Yours truly,

J Lobbezoo Engineering & Consulting Services Ltd.

Company of the second s	PERMIT/TO PRACTICE J LOBBEZOO ENGINEERING & CONSULTING SERVICES LTD.
John Lobbezog, P.Eng.	RM APEGA ID #: // 110450
Principal Geotechnical Engineer	DATE: 20 March 2025
Attachments	PERMIT NUMBER: P016456 The Association of Professional Engineers and Geoscientists of Alberta (APEGA)
In Situ Permeability Test Calculations	B

Down to Earth Soil Texture Results

Soil Profile and Parent Material Description, Chilako Drilling Services

----JLE(

TK6-25

In Situ Permeability Test

Modified Falling Head Permeability Equation

-

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[\frac{\sinh^{-1}\frac{\ell}{r_{\epsilon}}}{2} \ln \left[\frac{2H_{1} - \ell}{2H_{2} - \ell} \right] - \ln \left[\frac{2H_{1}H_{2} - \ell H_{2}}{2H_{1}H_{2} - \ell H_{1}} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

TK6-25 - Kody Traxel JLECS File: P24006

ŝ	Terms	Value	Definition
B	D	0.0520	diameter of standpipe (m)
A	De	0.1500	diameter of borehole (m)
AR	L	3.40	length of sand section (m)
>	h1	10.00	initial height of water above base of hole (m)
5	h2	8.85	final height of water above base of hole (m)
đ	t	24.0	time of test (h)

k _s =	3.6E-08 cm/sec	

TK9-25

In Situ Permeability Test

Modified Falling Head Permeability Equation

-

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[\frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[\frac{2H_{1}-\ell}{2H_{2}-\ell} \right] - \ln \left[\frac{2H_{1}H_{2}-\ell}{2H_{1}H_{2}-\ell} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

TK9-25 - Kody Traxel JLECS File: P24006

B	Terms	Value	Definition
B	D	0.0520	diameter of standpipe (m)
A	De	0.1500	diameter of borehole (m)
AR	L	1.55	length of sand section (m)
>	h1	3.30	initial height of water above base of hole (m)
5	h2	1.80	final height of water above base of hole (m)
ď	t	24.0	time of test (h)
-			

ks = 3.5E-07 cm/sec

TK10-25

In Situ Permeability Test

Modified Falling Head Permeability Equation

-

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[\frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[\frac{2H_{1}-\ell}{2H_{2}-\ell} \right] - \ln \left[\frac{2H_{1}H_{2}-\ell}{2H_{1}H_{2}-\ell} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

TK10-25 - Kody Traxel JLECS File: P24006

ES.	Terms	Value	Definition
B	D	0.0520	diameter of standpipe (m)
A	De	0.1500	diameter of borehole (m)
AR	L	1.60	length of sand section (m)
>	h1	4.20	initial height of water above base of hole (m)
5	h2	2.09	final height of water above base of hole (m)
Å	t	24.0	time of test (h)

ks = 3.8E-07 cm/sec

TK12-25

In Situ Permeability Test

Modified Falling Head Permeability Equation

-

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[\frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln\left[\frac{2H_{1}-\ell}{2H_{2}-\ell}\right] - \ln\left[\frac{2H_{1}H_{2}-\ell}{2H_{1}H_{2}-\ell}\right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

TK12-25 - Kody Traxel JLECS File: P24006

ŝ	Terms	Value	Definition
Ы	D	0.0520	diameter of standpipe (m)
I	De	0.1500	diameter of borehole (m)
AR	L	1.20	length of sand section (m)
>	h1	4.40	initial height of water above base of hole (m)
5	h2	2.70	final height of water above base of hole (m)
d Z	t	24.0	time of test (h)

ks = 3.0E-07 cm/sec

Down To Earth Labs Inc. The Science of Higher Yields

J. Lobbezoo Engineering + Consulting Services Box 96 Monarch, Alberta T0L 1M0	Report #: 202729 Report Date: 2025-03-06 Received: 2025-03-04 Completed: 2025-03-06 Test Done: ST			Project : PO:	Traxel	3510 6th Ave North Lethbridge, AB T1H 5C3 403-328-1133 www.downtoearthlabs.com info@downtoearthlabs.com	
Cus	Sample ID: ust. Sample ID: alyte Units		Iple ID: 250304L005 Iple ID: TK1-25 Units 6.5-7.5	250304L006 TK2-25 1.5-3.0	250304L007 TK5-25 6.5-7.5	250304L008 TK6-25 6.5-7.5	250304L009 TK7-25 6.5-7.5
s	and	%	48.0	46.1	46.2	47.2	44.2
	Silt	%	26.0	31.9	29.8	28.8	31.8
	Clay	%	26.0	22.0	24.0	24.0	24.0
Soil Tex	ture		Sandy Clay Loam	Loam	Loam	Loam	Loam

Down To Earth Labsinc.

The Science of Higher Yields

J. Lobbezoo Engineering + Consulting Services Box 96 Monarch, Alberta T0L 1M0	Report #: 202729 Report Date: 2025-03-06 Received: 2025-03-04 Completed: 2025-03-06 Test Done: ST		Project	: Traxel	3510 6th Ave North Lethbridge, AB T1H 5C3 403-328-1133 www.downtoearthlabs.com info@downtoearthlabs.com		
Cu	Sa st. Sa	mple ID: mple ID:	250304L010 TK8-25	250304L011 TK9-25	250304L012 TK10-25	250304L013 TK11-25	250304L014 TK12-25
Ana	alyte	Units	1.5-3.0	1.5-3.0	2.0-3.0	2.0-3.0	2.0-3.0
5	Sand	%	45.2	48.1	48.2	42.2	37.2
		%	29.8	29.9	27.8	29.8	36.8
	Clay	%	25.0	22.0	24.0	28.0	26.0
Soil Tex	ture	-	Loam	Loam	Sandy Clay Loam	Clay Loam	Loam

Raygan Boyce - Chemist

CHILAKO DRILLING SERVICES LTD

Box 942 Coaldale, Alberta, T1M 1M8 (403) 345-3710

SOIL PROFILE AND PARENT MATERIAL DESCRIPTION

	Site Location: NW6-7-11W4, Kody Traxel Date: 24-Feb-25						
Hole #	Location	Depth	Texture	Moisture	Geological	Sample	Remarks
TK1-25	0503807 5526046	0-0.4 0.4-1.5 1.5-6.0 6.0-9.2	CL CL-C CL-C	F M M M	Fill Till Till Till	1.5-3.0 6.5-7.5	Stiff, med plastic, grayish brown Stiff, med plastic, brown Stiff, med plastic, brown, iron staining
ТК2-25	0503851 5526060	0-1.0 1.0-3.0	CL CL	F M	Till Till		Stiff, med plastic, brown
TK5-25	0503802 5526124	0-1.7 1.7-9.2	CL CL-C	F M	Till Till	6.5-7.5	Stiff, med plastic, olive brown Stiff, med plastic, brown
TK6-25	0503814 5526096	0-1.5 1.5-6.3 6.3-9.4	CL CL-C CL-C	F M M	ТіШ ТіШ ТіШ	6.5-7.5	Stiff, med plastic, brown Stiff, med plastic, brown Stiff, med plastic, brown, iron staining 50mm H.C. Well installed to 9.4m BGS Screen: 9.4-6.4m Sand: 9.4-6.0m Bentonite: 6.0-0.0m Stickup: 0.6m Hole Diameter: 0.15m
TK7-25	0503764 5526059	0-0.5 0.5-3.9 3.9-4.1 4.1-6.6 6.6-9.2	CL CL CL-C CL	M M-VM M M	Fill Till Till Till Till	6.5-7.5	Soft-firm, med plastic, grayish brown V. Firm, med plastic, brown, some silt (CL-SicL) Stiff, med plastic, brown V. Firm, med plastic, brown, increase in silt
TK8-25	0503731 5525954	0-0.6 0.6-3.0	CL CL	F M	Till Till	1.5-3.0	V. Firm, med plastic, brown
ТК9-25	0503702 5525930	0-0.6 0.6-3.0	CL CL	F	Till Till	1.5-3.0	Stiff, med plastic, brown Stiff, med plastic, brown 50mm H.C. Well installed to 3.0m BGS Screen: 3.0-1.5m Sand: 3.0-1.45m Bentonite: 1.45-0.0m Stickup: 0.3m Hole Diameter: 0.15m
TK10-25	0503903 5526134	0-0.9 0.9-1.5 1.5-1.55 1.55-3.6	CL-C SCL CL	D M M M	ти ти ти ти		Stiff, med plastic, brown Sand lensing 50mm H.C. Well installed to 3.6m BGS Screen: 3.6-2.1m Sand: 3.6-2.0m Bentonite: 2.0-0.0m Stickup: 0.6m Hole Diameter: 0.15m
TK11-25	0503903 5526093	0-0.7 0.7-3.0	CL CL	F M	Till Till		Stiff, med plastic, brown
TK12-25	0503705 5526015	0-0.6 0.6-1.6 1.6-1.8 1.8-4.5	CL CL-FSCL CL	F M M	Till Till Till Till		Stiff, med plastic, brown V. Firm, low-medium plastic, brown 50mm H.C. Well installed to 4.4m BGS Screen: 4.4-2.9m Sand: 4.0-2.8m Bentonite: 2.8-0.0m Stickup: 0.4m Hole Diameter: 0.15m

Application LA25013 Page 48 of 48

5